ntroduction Wirsing's Problem Idea of Wirsing Sketch of the proof

On approximation to a real number by algebraic numbers of bounded degree

Anthony Poëls

Diophantine approximation and transcendence CIRM, Luminy

12th November 2025

How can a real number be "well" approximated by rational numbers?

2 / 20

How can a real number be "well" approximated by rational numbers?

Fix $\xi \in \mathbb{R} \setminus \mathbb{Q}$. There are infinitely many $p/q \in \mathbb{Q}$ such that

$$\left|\xi - \frac{p}{q}\right| \le \frac{1}{q^2}.$$

How can a real number be "well" approximated by rational numbers?

Fix $\xi \in \mathbb{R} \setminus \mathbb{Q}$. There are infinitely many $p/q \in \mathbb{Q}$ such that

$$\left|\xi-\frac{p}{q}\right|\leq \frac{1}{q^2}.$$

Remark: q measure the "complexity" (= the "height") of the rational number p/q.

Generalization? Rational numbers = algebraic numbers of degree 1.

Generalization? Rational numbers = algebraic numbers of degree 1.

Question. Fix an integer $n \ge 1$. Are there ∞ -many (real or complex) algebraic numbers α , of degree at most n, such that

$$|\xi - \alpha| \stackrel{??}{\ll} \frac{1}{H(\alpha)^{n+1}},$$

12th November 2025

Generalization? Rational numbers = algebraic numbers of degree 1.

Question. Fix an integer $n \ge 1$. Are there ∞ -many (real or complex) algebraic numbers α , of degree at most n, such that

$$|\xi - \alpha| \stackrel{??}{\ll} \frac{1}{H(\alpha)^{n+1}},$$

(here $H(\alpha) \stackrel{\text{def}}{=} ||P_{\alpha}|| = \text{naive height of } \alpha$, where $P_{\alpha} \in \mathbb{Z}[X] = \text{minimal polynomial of } \alpha$, irr. over \mathbb{Z}).

Generalization? Rational numbers = algebraic numbers of degree 1.

Question. Fix an integer $n \ge 1$. Are there ∞ -many (real or complex) algebraic numbers α , of degree at most n, such that

$$|\xi - \alpha| \stackrel{??}{\ll} \frac{1}{H(\alpha)^{n+1}},$$

(here $H(\alpha) \stackrel{\text{def}}{=} ||P_{\alpha}|| = \text{naive height of } \alpha$, where $P_{\alpha} \in \mathbb{Z}[X] = \text{minimal polynomial of } \alpha$, irr. over \mathbb{Z}).

Example: If p/q irreducible, then $H(p/q) = \|(p,q)\| \asymp |q|$.

Diophantine exponents

A diophantine exponent

Define $\omega_n^*(\xi)$ = as the sup. of all $\omega \ge 0$ such that there are ∞ -many algebraic numbers α , of degree at most n, satisfying

$$|\xi - \alpha| \le \frac{1}{H(\alpha)^{\omega + 1}}.$$

Diophantine exponents

A diophantine exponent

Define $\omega_n^*(\xi)$ = as the sup. of all $\omega \ge 0$ such that there are ∞ -many algebraic numbers α , of degree at most n, satisfying

$$|\xi - \alpha| \le \frac{1}{H(\alpha)^{\omega + 1}}.$$

Some properties of ω_n^* .

- $\omega_n^*(\xi) = n$ for almost every $\xi \in \mathbb{R}$ (Sprindžuk, 1969).
- If ξ is algebraic of degree d, then $\omega_n^*(\xi) = \min\{n, d-1\}$ (Schmidt's subspace theorem).
- $[n, \infty] \subseteq \omega_n^*(\mathbb{R} \setminus \overline{\mathbb{Q}})$ (Baker-Schmidt, 1970).

Theorem (Wirsing, 1961)

For any transcendental real number ξ , we have

$$\omega_n^*(\xi) \ge \frac{n+1}{2} \tag{4}$$

and

$$\omega_n^*(\xi) \ge W(n) = \frac{n}{2} + 1 - o(1).$$
 (9)

Wirsing's problem (1961)

Theorem (Wirsing, 1961)

For any transcendental real number ξ , we have

$$\omega_n^*(\xi) \ge \frac{n+1}{2} \tag{4}$$

◆ロト ◆団 ▶ ◆ 恵 ト ◆ 恵 ト ・ ・ 見 回 ・ ・ の Q (で)

and

$$\omega_n^*(\xi) \ge W(n) = \frac{n}{2} + 1 - o(1).$$
 (9)

Auch (9) ließe sich noch verbessern. Da die Verbesserung aber geringfügig ist und kein Grund besteht, anzunehmen, daß man mit (4) und (9) schon in der Nähe der bestmöglichen Schranke ist, soll darauf nicht eingegangen werden. Vielleicht gilt sogar stets $w_n^*(\xi) \ge n$ für n < s und reelles ξ .

E. Wirsing, 1961, Approximation mit algebraischen Zahlen beschränkten Grades, p.69.

"Wirsing's conjecture". We have $\omega_n^*(\xi) \geq n$ for any $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$.

"Wirsing's conjecture". We have $\omega_n^*(\xi) \geq n$ for any $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$.

- n = 1: true (approximation by rational numbers).
- n = 2 (Davenport and Schmidt, 1967) : true.
- $n \ge 3$: (widely) open problem.

"Wirsing's conjecture". We have $\omega_n^*(\xi) \geq n$ for any $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$.

- n = 1: true (approximation by rational numbers).
- n = 2 (Davenport and Schmidt, 1967) : true.
- $n \ge 3$: (widely) open problem.

Brief history

$$\omega_n^*(\xi) \ge \begin{cases} 0.5n + 1 - o(1) & \text{Wirsing, 1961} \\ n/2 + 3 - o(1) & \text{Bernik and Tishchenko,} < 2021 \\ n/\sqrt{3} \approx 0.577n & \text{Badziahin-Schleischitz, 2021.} \end{cases}$$

"Wirsing's conjecture". We have $\omega_n^*(\xi) \geq n$ for any $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$.

- n = 1: true (approximation by rational numbers).
- n = 2 (Davenport and Schmidt, 1967) : true.
- $n \ge 3$: (widely) open problem.

Brief history

$$\omega_n^*(\xi) \geq \begin{cases} 0.5n + 1 - o(1) & \text{Wirsing, } 1961 \\ n/2 + 3 - o(1) & \text{Bernik and Tishchenko, } < 2021 \\ n/\sqrt{3} \approx 0.577n & \text{Badziahin-Schleischitz, } 2021. \end{cases}$$

Main Theorem (P., 2025)

For any
$$\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$$
, we have
$$\omega_n^*(\xi) \geq \frac{n}{2 - \log 2} \approx 0.765 n.$$

 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2 □ □
 2 □ □
 2 □ □
 2 □ □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □
 2 □</t

Dirichlet's Theorem (1842)

Let $n \geq 1$ be an integer and let $\xi \in \mathbb{R}$. For each X > 1 there is $(a_0, \ldots, a_n) \in \mathbb{Z}^{n+1} \setminus \{0\}$ such that

$$\left|\underbrace{a_0 + a_1 \xi + \dots + a_n \xi^n}_{P(\xi)}\right| \le X^{-n} \quad \text{and} \quad \underbrace{\max_{1 \le i \le n} |a_i|}_{|x| = 1} \le X.$$

7 / 20

Main obstruction

Dirichlet's Theorem (1842)

Let $n \geq 1$ be an integer and let $\xi \in \mathbb{R}$. For each X > 1 there is $(a_0, \ldots, a_n) \in \mathbb{Z}^{n+1} \setminus \{0\}$ such that

$$\left|\underbrace{a_0 + a_1 \xi + \dots + a_n \xi^n}_{P(\xi)}\right| \le X^{-n} \quad \text{and} \quad \underbrace{\max_{1 \le i \le n} |a_i|}_{\|P\|} \le X.$$

Naive approach.

- Construct ∞ -many P in $\mathbb{Z}[X]_{\leq n}$ with $|P(\xi)| \ll ||P||^{-n}$ (Dirichlet's Theorem).
- Consider α root of P such that $|\xi \alpha|$ is minimal (we have $H(\alpha) \ll ||P||$).
- **Remark:** If $P(\xi)$ is "small", then so is $|\xi \alpha|$ (and vice versa).

◀□▷◀疊▷◀불▷◀불▷록불 ♡Q♡

Naive approach.

• Estimate of $|\xi - \alpha|$?

8 / 20

Naive approach.

• Estimate of $|\xi - \alpha|$? We have

$$|\xi - \alpha| \le n \frac{|P(\xi)|}{|P'(\xi)|} \ll \frac{H(\alpha)^{-n}}{|P'(\xi)|}.$$

Naive approach.

• Estimate of $|\xi - \alpha|$? We have

$$|\xi - \alpha| \le n \frac{|P(\xi)|}{|P'(\xi)|} \ll \frac{H(\alpha)^{-n}}{|P'(\xi)|}.$$

Serious issue: $|P'(\xi)|$ could be "small" ! ($\Leftrightarrow P$ has at least two roots "close" to ξ).

Naive approach.

• Estimate of $|\xi - \alpha|$? We have

$$|\xi - \alpha| \le n \frac{|P(\xi)|}{|P'(\xi)|} \ll \frac{H(\alpha)^{-n}}{|P'(\xi)|}.$$

Serious issue: $|P'(\xi)|$ could be "small" ! ($\Leftrightarrow P$ has at least two roots "close" to ξ).

Principle : If $P(\xi)$ is "very small" and $|P'(\xi)|$ is "not too small", then α is a "rather good" algebraic approximation.

Wirsing (1961):

$$\omega_n^*(\xi) \geq \frac{n+1}{2}.$$

Idea: if one good approximation is not enough, use two!

Wirsing (1961):

$$\omega_n^*(\xi) \geq \frac{n+1}{2}.$$

Idea: if one good approximation is not enough, use two!

• Construction of P and Q : Dirichlet's theorem.

12th November 2025

Wirsing (1961):

$$\omega_n^*(\xi) \geq \frac{n+1}{2}.$$

Idea: if one good approximation is not enough, use two!

• Construction of P and Q: Dirichlet's theorem. We ask that

$$|P(\xi)| \ll ||P||^{-n}$$
, $|Q(\xi)| \ll ||P||^{-n}$ and $||Q|| \ll ||P||$.

Wirsing (1961):

$$\omega_n^*(\xi) \geq \frac{n+1}{2}.$$

Idea: if one good approximation is not enough, use two!

• Construction of P and Q: Dirichlet's theorem. We ask that

$$|P(\xi)| \ll ||P||^{-n}$$
, $|Q(\xi)| \ll ||P||^{-n}$ and $||Q|| \ll ||P||$.

• Make sure that P and Q are coprime... (nice trick)

Wirsing (1961):

$$\omega_n^*(\xi) \geq \frac{n+1}{2}.$$

Idea: if one good approximation is not enough, use two!

• Construction of P and Q: Dirichlet's theorem. We ask that

$$|P(\xi)| \ll ||P||^{-n}$$
, $|Q(\xi)| \ll ||P||^{-n}$ and $||Q|| \ll ||P||$.

- Make sure that P and Q are coprime... (nice trick)
- Bound from above their resultant

$$1 \leq |\underbrace{\operatorname{Res}(P,Q)}_{\in \mathbb{Z} \setminus \{0\}}| = |\underbrace{\operatorname{Res}(P(X+\xi),Q(X+\xi))}_{\text{involves } P(\xi),P'(\xi),Q(\xi),Q'(\xi)}|.$$

9 / 20

Wirsing's proof

Wirsing (1961):

$$\omega_n^*(\xi) \geq \frac{n+1}{2}$$
.

Idea: if one good approximation is not enough, use two!

• Construction of P and Q: Dirichlet's theorem. We ask that

$$|P(\xi)| \ll ||P||^{-n}$$
, $|Q(\xi)| \ll ||P||^{-n}$ and $||Q|| \ll ||P||$.

- Make sure that P and Q are coprime... (nice trick)
- Bound from above their resultant

$$1 \leq |\underbrace{\operatorname{Res}(P,Q)}_{\in \mathbb{Z} \setminus \{0\}}| = |\underbrace{\operatorname{Res}(P(X+\xi),Q(X+\xi))}_{\text{involves } P(\xi),P'(\xi),Q(\xi),Q'(\xi)}|.$$

Write

$$P(X + \xi) = P(\xi) + P'(\xi)X + \frac{P''(\xi)}{2}X^2 + \cdots$$

... then $\operatorname{Res}(P(X+\xi),Q(X+\xi))$ is equal to

Idea of Wirsing 0000

Wirsing's proof

Putting everything together, we finally find that

$$1 \ll \max\{|P'(\xi)|, |Q'(\xi)|\}^2 \underbrace{\max\{|P(\xi)|, |Q(\xi)|\}}_{\ll H(P)^{-n}} \|P\|^{2n-3}.$$

roduction Wirsing's Problem **Idea of Wirsing** Sketch of the proof

OO OOO OOOOOO

Wirsing's proof

Putting everything together, we finally find that

$$1 \ll \max\{|P'(\xi)|, |Q'(\xi)|\}^2 \underbrace{\max\{|P(\xi)|, |Q(\xi)|\}}_{\ll H(P)^{-n}} \|P\|^{2n-3}.$$

- \Rightarrow either $|P'(\xi)|$ or $|Q'(\xi)|$ is "not too small";
- \Rightarrow either P or Q has a root "quite close to" ξ ;

Putting everything together, we finally find that

$$1 \ll \max\{|P'(\xi)|, |Q'(\xi)|\}^2 \underbrace{\max\{|P(\xi)|, |Q(\xi)|\}}_{\ll H(P)^{-n}} \|P\|^{2n-3}.$$

- \Rightarrow either $|P'(\xi)|$ or $|Q'(\xi)|$ is "not too small";
- ullet \Rightarrow either P or Q has a root "quite close to" ξ ;

After computation:

$$\omega_n^*(\xi) \geq \frac{n+1}{2}$$
.

Idea of Wirsing 0000

To go further...

Our goal: prove that $\omega_n^*(\xi) \ge \frac{n}{2 - \log 2} = 0.765 \cdots n$.

Our strategy: "THE MORE, THE MERRIER." (14th-century, poem Pearl, line 850).

12 / 20

ntroduction Wirsing's Problem **Idea of Wirsing** Sketch of the proof

To go further...

Our goal: prove that $\omega_n^*(\xi) \ge \frac{n}{2 - \log 2} = 0.765 \cdots n$.

Our strategy: "THE MORE, THE MERRIER." (14th-century, poem *Pearl*, line 850).

 \to Choose n+1 linearly independent "good" polynomial approximations in $\mathbb{Z}[X]_{\le n}$.

ntroduction Wirsing's Problem **Idea of Wirsing** Sketch of the proof

To go further...

Our goal: prove that $\omega_n^*(\xi) \ge \frac{n}{2 - \log 2} = 0.765 \cdots n$.

Our strategy: "THE MORE, THE MERRIER." (14th-century, poem *Pearl*, line 850).

o Choose n+1 linearly independent "good" polynomial approximations in $\mathbb{Z}[X]_{\leq n}$.

Framework: parametric geometry of numbers.

12 / 20

 troduction
 Wirsing's Problem
 Idea of Wirsing
 Sketch of the proof

 100
 0000
 0000
 ●000000

Back to Wirsing's problem...

We choose I.i. polynomials P_1, \ldots, P_{n+1} which realize the successive minima of the symmetric convex body

$$\mathcal{C}_{\xi}(q) = \left\{ R \in \mathbb{R}[X]_{\leq n}; \ \|R\| \leq 1 \quad ext{and} \quad |R(\xi)| \leq e^{-q}
ight\}$$

with respect to the lattice $\mathbb{Z}[X]_{\leq n}$ (for a good choice of q).

ntroduction Wirsing's Problem Idea of Wirsing Sketch of the proof

Back to Wirsing's problem...

We choose l.i. polynomials P_1, \ldots, P_{n+1} which realize the successive minima of the symmetric convex body

$$\mathcal{C}_{\xi}(q) = \left\{ R \in \mathbb{R}[X]_{\leq n}; \ \|R\| \leq 1 \quad \text{and} \quad |R(\xi)| \leq e^{-q} \right\}$$

with respect to the lattice $\mathbb{Z}[X]_{\leq n}$ (for a good choice of q).

Remark. Polynomials realizing the first minium = best polynomial approximations... ("given" by Dirichlet's Theorem.).

Back to Wirsing's problem...

We choose l.i. polynomials P_1, \ldots, P_{n+1} which realize the successive minima of the symmetric convex body

$$\mathcal{C}_{\xi}(q) = \left\{ R \in \mathbb{R}[X]_{\leq n} \, ; \, \|R\| \leq 1 \quad \text{and} \quad |R(\xi)| \leq e^{-q} \right\}$$

with respect to the lattice $\mathbb{Z}[X]_{\leq n}$ (for a good choice of q).

Remark. Polynomials realizing the first minium = best polynomial approximations... ("given" by Dirichlet's Theorem.).

We have

- $||P_1|| \leq \cdots \leq ||P_{n+1}||$;
- $|P_k(\xi)| \le |P_1(\xi)|$ (after small correction);
- Control of the norms ?

troduction Wirsing's Problem Idea of Wirsing Sketch of the proof

○○ ○○○ ○○○ ○○○ ●○○○○○○

Back to Wirsing's problem...

We choose I.i. polynomials P_1, \ldots, P_{n+1} which realize the successive minima of the symmetric convex body

$$\mathcal{C}_{\xi}(q) = \left\{ R \in \mathbb{R}[X]_{\leq n} \, ; \, \|R\| \leq 1 \quad \text{and} \quad |R(\xi)| \leq e^{-q}
ight\}$$

with respect to the lattice $\mathbb{Z}[X]_{\leq n}$ (for a good choice of q).

Remark. Polynomials realizing the first minium = best polynomial approximations... ("given" by Dirichlet's Theorem.).

We have

- $||P_1|| \leq \cdots \leq ||P_{n+1}||$;
- $|P_k(\xi)| \le |P_1(\xi)|$ (after small correction);
- Control of the norms ? → Minkowski's second Theorem :

$$|P_1(\xi)| \|P_2\| \cdots \|P_{n+1}\| \approx 1.$$

Write
$$||P_k|| = ||P_2||^{a_k}$$
 and $|P_1(\xi)| \approx ||P_2||^{-x}$.

troduction Wirsing's Problem Idea of Wirsing Sketch of the proof
00 0000 0000 0000 0

Sketch of the proof

Sketch of the proof

Write $||P_k|| = ||P_2||^{a_k}$ and $|P_1(\xi)| \approx ||P_2||^{-x}$.

Properties of the parameters :

•
$$1 = a_2 \le a_3 \le \cdots \le a_{n+1}$$
,

•
$$a_2 + \cdots + a_{n+1} = x \ge n$$
 (Minkowski's second theorem),

Write $||P_k|| = ||P_2||^{a_k}$ and $|P_1(\xi)| \approx ||P_2||^{-x}$.

Properties of the parameters :

- $1 = a_2 \le a_3 \le \cdots \le a_{n+1}$,
- $a_2 + \cdots + a_{n+1} = x \ge n$ (Minkowski's second theorem),

Step 1. Bound from above

$$1 \leq |\det(P_1, \dots, P_{n+1})| = \begin{vmatrix} P_1(\xi) & P_2(\xi) & \cdots & P_{n+1}(\xi) \\ P'_1(\xi) & P'_2(\xi) & \cdots & P'_{n+1}(\xi) \\ \hline \mathcal{O}(\|P_1\|) & \mathcal{O}(\|P_2\|) & \cdots & \mathcal{O}(\|P_{n+1}\|) \\ \hline \mathcal{O}(\|P_1\|) & \mathcal{O}(\|P_2\|) & \cdots & \mathcal{O}(\|P_{n+1}\|) \end{vmatrix}.$$

$$1 \le |\underbrace{\det(P_1, \dots, P_{n+1})}_{\text{involves } P_i(\xi), P'_i(\xi)}|.$$

- \Rightarrow at least one of the $P'_i(\xi)$ is "not too" small;
- \Rightarrow at least one of the P_i has a root "rather close" to ξ ;
- ⇒ (after some computation)

$$\omega_n^*(\xi) \ge \beta_1(x, a_2, \dots, a_{n+1}) = \frac{x}{a_{n+1}}.$$

Sketch of the proof

Step 2. Get rid of P_{n+1} . Problem : we do not have a basis anymore...

12th November 2025

Sketch of the proof

Step 2. Get rid of P_{n+1} . Problem : we do not have a basis anymore...

 \rightarrow change the ambient space and work in $\mathbb{R}[X]_{n+1}$.

Sketch of the proof

Step 2. Get rid of P_{n+1} . Problem : we do not have a basis anymore...

- \rightarrow change the ambient space and work in $\mathbb{R}[X]_{n+1}$.
- \rightarrow Advantage: we can consider $P_1, XP_1, \dots, P_n, XP_n$ (2n polynomials).

Sketch of the proof

Step 2. Get rid of P_{n+1} . Problem : we do not have a basis anymore...

- \rightarrow change the ambient space and work in $\mathbb{R}[X]_{n+1}$.
- \rightarrow Advantage: we can consider $P_1, XP_1, \dots, P_n, XP_n$ (2n polynomials).

Form a basis \mathcal{B} of $\mathbb{R}[X]_{n+1}$ by choosing among

$$\{\underbrace{P_1, XP_1, P_2, XP_2}_{start}, \dots, P_i, XP_i, \dots, P_n, XP_n\}$$

(always possible if P_1 and P_2 coprime).

Sketch of the proof

Step 2. Get rid of P_{n+1} . Problem : we do not have a basis anymore...

- \rightarrow change the ambient space and work in $\mathbb{R}[X]_{n+1}$.
- \rightarrow Advantage: we can consider $P_1, XP_1, \dots, P_n, XP_n$ (2n polynomials).

Form a basis \mathcal{B} of $\mathbb{R}[X]_{n+1}$ by choosing among

$$\{\underbrace{P_1, XP_1, P_2, XP_2}_{start}, \dots, P_i, XP_i, \dots, P_n, XP_n\}$$

(always possible if P_1 and P_2 coprime). Bounding from above

$$1 \leq \underbrace{\left|\det(\mathcal{B})\right|}_{ ext{involves }P_i(\xi),\;P_i'(\xi)}$$

we obtain
$$\omega_n^*(\xi) \ge \beta_2(x, a_2, \dots, a_{n+1}) = \frac{x + a_{n+1} - 2}{a_n}$$
.

Step 3. Get rid of P_{n+1} and P_n and repeat the process with a basis of $\mathbb{R}[X]_{n+2}$ choosing among

$$\{\underbrace{P_1, XP_1, X^2P_1, P_2, XP_2, X^2P_2}_{\text{start}}, \dots, P_i, XP_i, X^2P_i, \dots\}.$$

We deduce that, for some explicit function β_3 ,

$$\omega_n^*(\xi) \geq \beta_3(x, a_2, \ldots, a_{n+1}).$$

:

Step *n*. Get rid of P_3, \ldots, P_{n+1} and consider the basis of $\mathbb{R}[X]_{2n-1}$

$$\mathcal{B} = \{P_1, XP_1, \dots, X^{n-1}, P_2, XP_2, \dots, X^{n-1}P_2\}$$

:

Step *n*. Get rid of P_3, \ldots, P_{n+1} and consider the basis of $\mathbb{R}[X]_{2n-1}$

$$\mathcal{B} = \{P_1, XP_1, \dots, X^{n-1}, P_2, XP_2, \dots, X^{n-1}P_2\}$$

Then (as in Wirsing's proof), we have

$$\det(\mathcal{B}) = \operatorname{Res}(P_1, P_2)$$

:

Step *n*. Get rid of P_3, \ldots, P_{n+1} and consider the basis of $\mathbb{R}[X]_{2n-1}$

$$\mathcal{B} = \{P_1, XP_1, \dots, X^{n-1}, P_2, XP_2, \dots, X^{n-1}P_2\}$$

Then (as in Wirsing's proof), we have

$$\det(\mathcal{B}) = \operatorname{Res}(P_1, P_2)$$

We find a last lower bound

$$\omega_n^*(\xi) \geq \beta_n(x, a_2, \ldots, a_{n+1}).$$

roduction Wirsing's Problem Idea of Wirsing Sketch of the proof

OO OOO OOO OOOO

Sketch of the proof

Combining all the previous estimates, we get

$$\omega_n^*(\xi) \ge \max \left\{ \beta_1, \ldots, \beta_n \right\} =: F(x, a_2, \ldots, a_{n+1}).$$

troduction Wirsing's Problem Idea of Wirsing Sketch of the proof
00 0000 0000 0000 00000€0

Sketch of the proof

Combining all the previous estimates, we get

$$\omega_n^*(\xi) \ge \max \left\{ \beta_1, \ldots, \beta_n \right\} =: F(x, a_2, \ldots, a_{n+1}).$$

Final step. Determine min F on the set of $(x, a_2, \ldots, a_{n+1})$ with

$$1 = a_2 \le \dots \le a_{n+1}$$
 and $a_2 + \dots + a_{n+1} = x \ge n$.

Combining all the previous estimates, we get

$$\omega_n^*(\xi) \ge \max \left\{ \beta_1, \ldots, \beta_n \right\} =: F(x, a_2, \ldots, a_{n+1}).$$

Final step. \mathcal{J} Determine min F on the set of $(x, a_2, \ldots, a_{n+1})$ with

$$1 = a_2 \leq \cdots \leq a_{n+1} \quad \text{and} \quad a_2 + \cdots + a_{n+1} = x \geq n.$$

We finally find

$$\omega_n^*(\xi) \ge \min F \ge \frac{n}{2 - \log 2}.$$

ntroduction Wirsing's Problem Idea of Wirsing Sketch of the proof 000 000 0000000 €

Thank you for your attention.

Parametric geometry of numbers

Schmidt and Summerer (2009, 2013), Roy (2015)

Basic idea

Setting: consider

- The lattice $\Lambda = \mathbb{Z}^{n+1} \simeq \mathbb{Z}[X]_{\leq n}$;
- A family of symmetric convex bodies C(q) of $\mathbb{R}^{n+1} \simeq \mathbb{R}[X]_{\leq n}$ (depending on a parameter $q \geq 0$).

Study the successive minima associated to those convex bodies w.r.t. A.

Recall that the *j*-th minimum $\lambda_i(q)$ is the minimum of the $\lambda \geq 0$ s.t.

$$\lambda C(q) \cap \Lambda$$

contains at least j linearly independent polynomials (j = 1, ..., n + 1).

We have $\lambda_1(q) \leq \cdots \leq \lambda_{n+1}(q)$ and **Minkowski's second theorem**:

$$\operatorname{vol}(\mathcal{C}(q))\lambda_1(q)\cdots\lambda_{n+1}(q)\asymp_n 1.$$

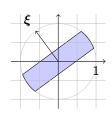
12th November 2025

Anthony Poëls On Wirsing's problem

Parametric geometry of numbers

Choice of the family ? \rightarrow related to Diophantine problems:

$$\mathcal{C}_{\xi}(q) = \Big\{ R \in \mathbb{R}[X]_{\leq n} \, ; \, \|R\| \leq 1 \quad \text{and} \quad |R(\xi)| \leq e^{-q} \Big\}.$$

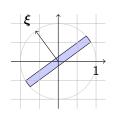


where $\boldsymbol{\xi} = (1, \xi, \xi^2, \dots, \xi^n)$ and we identify $\mathbb{R}^{n+1} \simeq \mathbb{R}[X]_{\leq n}$.

Parametric geometry of numbers

Choice of the family ? \rightarrow related to Diophantine problems:

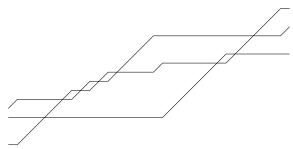
$$\mathcal{C}_{\xi}(q) = \Big\{ R \in \mathbb{R}[X]_{\leq n} \, ; \, \|R\| \leq 1 \quad \text{and} \quad |R(\xi)| \leq e^{-q} \Big\}.$$



where $\boldsymbol{\xi} = (1, \xi, \xi^2, \dots, \xi^n)$ and we identify $\mathbb{R}^{n+1} \simeq \mathbb{R}[X]_{\leq n}$.

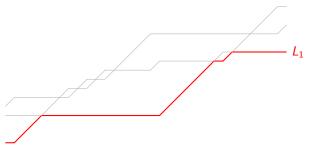
The functions $L_i(q) = \log \lambda_i(q)$ have nice properties :

- $L_1(q) \leq \cdots \leq L_{n+1}(q)$ are continuous,
- L_i piecewise linear with slope 0 or 1,
- $L_1(q) + \cdots + L_{n+1}(q) = q + \mathcal{O}(1)$ (Minkowski's second theorem),
-



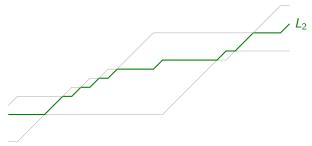
The functions $L_i(q) = \log \lambda_i(q)$ have nice properties :

- $L_1(q) \leq \cdots \leq L_{n+1}(q)$ are continuous,
- L_i piecewise linear with slope 0 or 1,
- $L_1(q) + \cdots + L_{n+1}(q) = q + \mathcal{O}(1)$ (Minkowski's second theorem),
- <u>. . . .</u>



The functions $L_i(q) = \log \lambda_i(q)$ have nice properties :

- $L_1(q) \leq \cdots \leq L_{n+1}(q)$ are continuous,
- L_i piecewise linear with slope 0 or 1,
- $L_1(q) + \cdots + L_{n+1}(q) = q + \mathcal{O}(1)$ (Minkowski's second theorem),
- <u>. . . .</u>



The functions $L_i(q) = \log \lambda_i(q)$ have nice properties :

- $L_1(q) \leq \cdots \leq L_{n+1}(q)$ are continuous,
- L_i piecewise linear with slope 0 or 1,
- $L_1(q) + \cdots + L_{n+1}(q) = q + \mathcal{O}(1)$ (Minkowski's second theorem),
-

