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Abstract

In this article, we present a new linear independence criterion for values of the p-adic polygamma
functions defined by J. Diamond. As an application, we obtain the linear independence of some families
of values of the p-adic Hurwitz zeta function ζp(s, x) at distinct shifts x. This improves and extends
a previous result due to P. Bel [5], as well as irrationality results established by F. Beukers [7]. Our
proof is based on a novel and explicit construction of Padé-type approximants of the second kind of
Diamond’s p-adic polygamma functions. This construction is established by using a difference analogue
of the Rodrigues formula for orthogonal polynomials.
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1 Introduction

1.1 State of the art

A classical problem in Diophantine approximation is the study of the irrationality or linear independence of
values of L-functions at positive integers. A famous example is the case of the Riemann zeta function. In
their seminal 2001 papers [3, 38], K. Ball and T. Rivoal established that, given an odd integer a ≥ 3, the
dimension δ(a) of the Q-vector space spanned by 1, ζ(3), ζ(5), . . . , ζ(a) satisfies

δ(a) ≥ 1
3 log a,

where ζ : C \ {1} → C is the Riemann zeta function. Their work has inspired many others, see for example
S. Fischler, Sprang and W. Zudilin [19], L. Lai and P. Yu [28], and Fischler [18] for irrationality and
linear independence results of odd values of the Riemann zeta function. In this article, we are interested
in proving similar properties for p-adic L-functions, where p denotes a fixed prime number. We still have
few answers to this kind of questions. In 2005, F. Calegari [9] used the theory of p-adic modular forms
to establish the irrationality of ζp(3), for p = 2, 3, and L2(2, χ), where χ is the Dirichlet character of
conductor 4. Subsequently, F. Beukers [7] provided an alternative proof of these results. Using classical
continued fractions discovered by T. J. Stieltjes, he also proved the irrationality for some values of the p-adic
Hurwitz zeta function ζp(s, x) at s = 2, 3 (see Definition 2.3 of Section 2 for the precise definition of ζp(s, x)).
In [5], P. Bel adapted the approach of [3] to obtain similar properties for certain p-adic functions. This was
later generalized by M. Hirose, N. Sato and the first author [22]. The following linear independence criterion
is a consequence of the proof of [5, Théorème 3.2].

Theorem 1.1 (Bel, 2010). Let m ≥ 1 be an integer and p be a prime number such that

log p ≥ (1 + log 2)(m + 1)2.(1)
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Then, the m + 1 elements of Qp:

1, ζp(2, p−1), . . . , ζp(m + 1, p−1)

are linearly independent over Q.

Bel proved Theorem 1.1 building upon a construction of Padé first kind approximations due to T. Rivoal
(confer [39]), which is derived from the asymptotic expansion of the Hurwitz zeta function. In [6] Bel also
proved the irrationality of ζp(4, x) for x = 1/p with p ≥ 19. Lower bounds for the dimension of the vector
space spanned by p-adic Hurwitz zeta values and Kubota-Leopoldt p-adic L-values can be found in the
recent papers of J. Sprang [44], also see L. Lai [30], and Lai and Sprang [31]. Their results were obtained by
constructing approximations of p-adic L-values, in a similar way to Ball-Rivoal for the (complexe) Riemann
zeta function [3]. Before stating our main result, which requires some technical definitions, let us present
two of its consequences.

Theorem 1.2. There exists an explicit constant C ≥ 1 with the following properties. Let p be a prime
number and m, r be positive integers. Suppose that

r log p ≥ Cmlog(m + 1).(2)

Then the m + 1 elements of Qp:

1, ζp(2, p−r), . . . , ζp(m + 1, p−r)

are linearly independent over Q.

For r = 1, we improve Theorem 1.1 by replacing the condition log p ≫ m2 with the weaker condition
log p ≫ m log m. Note that for a fixed parameter m, condition (2) is automatically satisfied is p is large
enough. A refined and explicit version of Theorem 1.2, namely Theorem 12.1, is given in Section 12. Also
note that the special case d = m = 1 of the aforementioned result (see Section 12) was proved by Beukers in
[7, Theorem 9.2]. The table below shows how the condition in Theorem 12.1 compares to that of Bel (B.)
for m ≤ 8. For m ≥ 3, we just wrote a crude order of magnitude given by the conditions.

m 1 2 3 4 5 6 7 8
p ≥ (B.) 874 4148779 6 · 1011 2 · 1018 3 · 1026 1036 1047 4 · 1059

p ≥ (new) 5 144 7 · 106 109 3 · 1011 7 · 1013 2 · 1016 8 · 1018

Figure 1: Comparison between our condition and that of P. Bel

Our main theorem also allows us to obtain the linear independence of values of the p-adic Hurwitz zeta
function at distinct shifts. Theorem 12.2 of Section 11 is an explicit and refined version of the following
result.

Theorem 1.3. There exists an explicit constant C ≥ 1 with the following properties. Let p be a prime
number and a, b, m, δ be positive integers with δ = a − 3(m + 1)b > 0. Assume that(

δ − 3m + 2
p − 1

)
log p ≥ Cmlog(m + 1).(3)

Then the 2m + 1 elements of Qp:

1, ζp(2, p−a), . . . , ζp(m + 1, p−a), ζp

(
2, p−a + p−b

)
, . . . , ζp

(
m + 1, p−a + p−b

)
are linearly independent over Q.
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Remark 1.4. Similarly to condition (2) of Theorem 1.2, for fixed parameters a, b, m satisfying δ > 0,
condition (3) holds for all large enough p. More precisely, it is sufficient to have

p ≥ max
{

2(3m + 2)
δ

+ 1, exp
(2Cm log(m + 1)

δ

)}
.

1.2 Main result

Let ζ(s, x) =
∑∞

k=0
1

(k+x)s denote the Hurwitz zeta function (where s ∈ C satisfies ℜ(s) > 1 and x ∈ R>0).
Consider m ∈ N with m ≥ 2 and x = a/b ∈ Q, where a and b are coprime positive integers. It is well known
that ζ(m, x) is a period in the sense of Kontsevich and Zagier (see [27, Chapter 1]). Many fascinating and
still widely open problems, such as Chowla-Milnor conjecture (see [21]), concern the linear independence over
Q of values of ζ(m, x). In this article, we turn our attention to a p-adic analogue of this kind of questions.
Values of Kubota-Leopoldt p-adic L-functions at positive integers can be expressed as linear combinations
of values of p-adic polygamma functions at rational points, as shown by J. Diamond (confer [17, Theorem
3]). This motivates us to investigate in this paper the linear independence of p-adic polygamma values. In
order to state our main result, namely Theorem 1.5 below, we need the following notation.

Let Qp be an algebraic closure of the field of p-adic numbers Qp. We write |·|p : Qp −→ R≥0 for the p-adic
norm on Qp with the normalization |p|p = p−1. We denote by Gp : Qp \Zp → Qp the log gamma function of
Diamond, and by ω : Q×

p → Q×
p the Teichmüller character, whose precise definitions are recalled in Section 2.

The function Gp is a p-adic analog of the classical log Γ-function and satisfies Gp(x + 1) = Gp(x) + logp(x),
where logp stands for the Iwasawa p-adic logarithm. The function Gp is locally analytic on Cp \ Zp and
admits the expansion

Gp(z) =
(

z − 1
2

)
logp(z) − z +

∞∑
k=1

Bk+1

k(k + 1) · 1
zk

,

valid for each z ∈ Qp \Zp, where Bk denotes the k-th Bernoulli number. For any integer s ≥ 0, the (s+1)-th
derivative G

(s+1)
p of Gp is called the s-th Diamond’s p-adic polygamma function. We set qp = p if p ≥ 3 and

qp = 4 if p = 2. The p-adic Hurwitz zeta function ζp(s, x) satisfies the classical identity

G(s)
p (x) = (−1)s(s − 1)!ω(x)1−sζp(s, x)(4)

for each x ∈ Qp with |x|p ≥ qp and each integer s ≥ 2 (see Eq. (16)). We are now ready to state the main
results of our paper. To the best of our knowledge, this is the first p-adic linearly independence criterion
involving distinct shifts x + αi.

Theorem 1.5. There exists an absolute explicit constant C ≥ 1 with the following properties. Let d, m be
positive integers and α = (α1, . . . , αd) ∈ Qd with α1 = 0 and

αi − αj /∈ Z for any i ̸= j.(5)

Let x ∈ Q. Suppose that x, α2, . . . , αd can be written as reduced fractions whose denominator is a power of
p, and that

log |x|p ≥ Cdm
(

log(dm + 1) + log
(

max
{

1, |α2|p, . . . , |αd|p
}))

.(6)

Then for i = 1, . . . , d, we have |x + αi|p > 1, and the dm + 1 elements of Qp:

1, G(2)
p (x + α1), . . . , G(m+1)

p (x + α1), . . . , G(2)
p (x + αd), . . . , G(m+1)

p (x + αd)

are linearly independent over Q.
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Theorem 1.5 combined with (4) yields the following consequence.

Theorem 1.6. Let d, m, α = (α1, . . . , αd), p and x satisfying the hypotheses of Theorem 1.5. Then 1
together with the dm elements of Qp

ω(x + αi)1−sζp(s, x + αi) (1 ≤ i ≤ d and 2 ≤ s ≤ m + 1)

are linearly independent over Q, where ω denotes the Teichmüller character on Q×
p .

Remark 1.7. In Section 11 we will prove more general statements -without the assumption that the de-
nominators of x, α2, . . . , αd are powers of p- with an explicit condition instead of (6), see Theorems 11.1
and 11.2.

Remark 1.8. Note that according to [12, Proposition 11.2.9], given an integer s ≥ 2 and x ∈ Qp with
|x|p ≥ qp, we have

ζp(s, x + 1) − ζp(s, x) = −ω(x)s−1x−s.

In particular, if x ∈ Q is such that ω(x)s−1 ∈ Q (which is always the case if p − 1 divides s − 1 for example),
then 1, ζp(s, x), ζp(s, x + 1) are linearly dependent over Q. Condition (5) appearing in Theorems 1.5 and 1.6
is therefore necessary and quite natural.

We can deduce Theorem 1.2 (resp. Theorem 1.3) from the explicit version of Theorem 1.6 by choosing
the parameters d = 1 and x = p−r (resp. d = 2, x = p−a and α2 = p−b). In that case we will see that
ω(p−r) ∈ Q (resp. ω(p−a) = ω(p−a + p−b) ∈ Q), see (15).

Our strategy. The proof of Theorem 1.5 is based on Padé approximants of second kind. This a similar
approach to Beukers in [7, Theorem 9.2], although we will use different tools in a more general context.
Our constructions heavily rely on formal integration transforms φf (see Section 4). This method was
employed, though expressed differently, in [13, 14, 15, 25, 23]. While holonomic series were considered in the
aforementioned studies, in this paper we examine their “difference analogs”, in other words, formal Laurent
series which satisfy a difference equation. For each integer s ≥ 2, define the formal Laurent series Rs(z) by

Rs(z) =
∞∑

k=s−2
(k − s + 3)s−2Bk−s+2 · (−1)k+1

zk+1 ,

where Bk denotes the k-th Bernoulli number and (a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer symbol.
Then, for each x ∈ Cp\Zp, the s-th polygamma function G

(s)
p evaluated at x is equal to −Rs(x). The Laurent

series Rs(z) is the image of a G-function in the sense of Siegel [43] under a modified Mellin transform MInv,
whose definition is inspired by [4, Définition 1] and [2, Section 7]. This will allow us to show that Rs(z) is
a solution to a certain difference equation, see Proposition 5.4. We will then construct Padé approximants
of second kind (Pn(z), Qn,i,s(z))(i,s) of the series (Rs(z + αi))(i,s). This uses a difference analogue of the
Rodrigues formula for Padé approximants, as outlined in [23, Section 2] by the first author.

To prove the main theorem using Siegel’s method [43], it is necessary to demonstrate the non-vanishing of
the determinant formed by those Padé approximants, which involves Bernoulli numbers. In previous works
such as [13, 14, 15, 25, 23], this step is done by computing a “closed form” of the involved determinants,
which can be quite a difficult and challenging problem in general, see [24] for example. Here, we develop new
tools which allows us to prove the non-vanishing property rather “simply”, without having to obtain such
explicit formula. This approach is expected to apply in different settings. The rest of the proof is classical,
although quite technical. Given a rational number x, we estimate the growth of the sequences (|Pn(x)|)n,
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(|Qn,i,s(x)|)n, (|Pn(x)Rs(x + αi) − Qn,i,s(x)|p)n, as well as that of (|Dn(x)|)n and (|Dn(x)|p)n, where Dn(x)
denotes the common denominator of Pn(x) and Qn,i,s(x). Suitable growth conditions ensure that the p-adic
numbers Rs(x + αi) together with 1 are linearly independent. For the estimates of (|Pn(x)|)n, (|Qn,i,s(x)|)n,
we explain in Section 10 how we can use Perron’s second Theorem to improve the rough estimates that we
get. To our knowledge, the majority of the Diophantine results based on Poincaré-Perron theorem involve
recurrences of order 2. In our case, the order of the Poincaré-Perron recurrences involved is equal to d(m+1),
where the parameters d, m are as in Theorem 1.5. In particular, it can be strictly larger than 2.

Outline of our article. In Section 2 we introduce our notation and recall the definitions and some
properties of Diamond’s p-adic polygamma functions G

(s)
p (z) and the p-adic Hurwitz zeta functions ζp(s, x).

Several formal transforms will play an important role in our constructions, such as a modified inverse Mellin
transform and formal integration transforms introduced in Section 3 and 4 respectively. In Section 5 we define
some formal series Rα,s(z) which are related to the p-adic polygamma functions. Using the modified inverse
Mellin transform, the formal integration transforms, and some basic properties of the difference operator
established in Section 6, we construct some Padé approximants of the functions Rα,s(z) is Section 7. To prove
our main theorem, we need to study these Padé approximants in more depth. First, as explained previously,
we need to prove that they are linearly independent, which amounts to showing the non-vanishing of some
determinant. This is a consequence of the main result of Section 8. Secondly, we need to establish several
estimates, such as the growth of our Padé approximants and their denominators, as well as the p-adic growth
of the Padé approximations. This is done in Section 9 and 10. Finally, Section 11 is devoted to the proof of
more general and explicit versions of Theorems 1.5 and 1.6, whereas we prove refined and explicit versions
of Theorems 1.2 and 1.3 in Section 12.

2 Notation

In this section, we introduce some notation and we give the definition of the log gamma function of Diamond
Gp(z), Diamond’s p-adic polygamma functions and the p-adic Hurwitz zeta function ζp(s, x), as well as some
basic properties they satisfy and that we will use later. In subsection 2.2, we recall some elements of Padé
approximation theory.

2.1 The p-adic Hurwitz zeta function

The floor (resp. ceiling) function is denoted by ⌊·⌋ (resp. ⌈·⌉). For any a ∈ Z, we denote by Z≤a the set
of integers n with n ≤ a. We define similarly Z<a, Z≥a and Z>a. The rising factorials are the polynomials
(x)n = x(x + 1) · · · (x + n − 1) (n ∈ Z≥0), with the convention that (x)0 = 1. Given a (unitary) ring R and
an integer n ≥ 1, we denote by R× the unit group of R.

In the following, we fix a prime number p and we set

qp =
{

p if p ≥ 3
4 if p = 2.

(7)

As usual, Qp is the field of p-adic numbers, and Cp is the p-adic completion of an algebraic closure of
Qp. We write | · |p : Cp −→ R≥0 for the p-adic norm with the normalization |p|p = p−1. We denote by
vp : Cp → Q ∪ {∞} the valuation which extends the usual p-adic valuation on Z. With this notation, we
have |x|p = p−vp(x) for each x ∈ Cp. The ring of p-adic integers is the subset Zp = {x ∈ Qp ; |x|p ≤ 1}, and
the group of units of Zp is Z×

p = {x ∈ Qp ; |x|p = 1}.
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Given d ∈ Z>0 and α = (α1, . . . , αd) ∈ Qd, define µ(α) and the denominator den(α) by

den(α) = min{n ∈ Z≥1 ; nαi ∈ Z for all i = 1, . . . , d},

µ(α) = den(α)
∏

q:prime
q|den(α)

q
1

q−1 .(8)

Note that den(α) = lcm
(
den(α1), . . . , den(αd)), where lcm stands for the least common multiple. Thus

den(αi) ≤ den(α) and µ(αi) ≤ µ(α) for i = 1, . . . , d.

Bernoulli numbers and polynomials. We define the Bernoulli polynomials Bn(x) by their exponential
generating function

zexz

ez − 1 =
∞∑

k=0
Bk(x)zk

k! ,(9)

and the Bernoulli numbers Bn by Bn = Bn(0). Recall that B′
n(x) = nBn−1(x) for each n ≥ 1, and that

Bn(x) is a monoic polynomial of degree n. We also have the classic formulas Bn(x + 1) = Bn(x) + nxn−1,
as well as

n∑
k=0

(
n

k

)
yn−kBk(x) = Bn(x + y) and

n−1∑
k=0

(
n

k

)
Bk(x) = nxn−1.

For any positive integer k, Staudt-Clausen Theorem (see [11]) ensures that

B2k +
∑

p−1|2k

1
p

∈ Z(10)

where it is understood that p is a prime number. In particular, for any prime number p and any integer
n ≥ 0, we have |Bn|p ≤ p. It follows that for any α ∈ Cp, we have

|Bp(α)|p =
∣∣∣∣∣

n∑
k=0

(
n

k

)
Bkαn−k

∣∣∣∣∣
p

≤ p · max{1, |α|p}n.(11)

Volkenborn integral. A detailed study of the Volkenborn integral would be quite long, so we refer to
[40] for the missing details. We say that a continuous function f : Zp → Cp is Volkenborn integrable if the
sequence

p−n

pn−1∑
k=0

f(k)

converges p-adically. In that case we call its limit the Volkenborn integral of f and we write∫
Zp

f(t)dt := lim
n→∞

p−n

pn−1∑
k=0

f(k)

(confer [48]). For example, continuously differentiable functions and locally analytic functions are Volkenborn
integrable, see [42, §55]. For all x ∈ Qp and n ∈ Z≥0, we have∫

Zp

(x + t)ndt = Bn(x)

(see [12, Section 11.1]).
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Log gamma and polygamma functions of Diamond. We denote the (Iwasawa) p-adic logarithm
function by logp : C×

p → Cp. The following properties characterize logp. We have logp(xy) = logp(x)+logp(y)
for each x, y ∈ C×

p , logp(p) = 0 and

logp(1 + x) =
∑
n≥0

(−1)n+1xn

n

for each x ∈ Cp with |x|p < 1. In [16], J. Diamond introduced a p-adic analog Gp of the classical log Γ-function
as follows.

Definition 2.1. The log gamma function of Diamond Gp : Cp \ Zp → Cp is the function given for each
x ∈ Cp \ Zp by

Gp(x) =
∫
Zp

(
(x + t) logp(x + t) − (x + t)

)
dt.

For each integer s ≥ 1, we also define Rs : Cp \ Zp → Cp by setting

Rs(x) = −G(s)
p (x) (x ∈ Cp \ Zp).(12)

Recall that Gp satisfies the functional equation Gp(x + 1) = Gp(x) + logp(x) for each x ∈ Cp \Zp, and is
locally analytic on Cp \ Zp. Furthermore, Gp(z) has the following expansion (confer [16, Theorem 6]):

Gp(z) =
(

z − 1
2

)
logp(z) − z +

∞∑
k=1

Bk+1

k(k + 1) · 1
zk

(z ∈ Cp, |z|p > 1).(13)

The successive derivatives of Gp are called the Diamond’s p-adic polygamma functions. For our purpose,
it is more convenient to work with Rs. By (13), the function R2 has the following expansion:

R2(z) =
∞∑

k=0
Bk · (−1)k+1

zk+1 = B0

z
− B1

z2 + B2

z3 + B4

z5 + B6

z7 + · · · (z ∈ Cp, |z|p > 1).

More generally, for each integer s ≥ 2 and each z ∈ Cp with |z|p > 1, we have

Rs(z) = R
(s−2)
2 (z) =

∞∑
k=s−2

(k − s + 3)s−2Bk−s+2 · (−1)k+1

zk+1 .(14)

Teichmüller character. Recall that qp is defined in (7). We define the Teichmüller character ω : Q×
p → Q×

p

as follows. For any x ∈ Z×
p = {x ∈ Qp ; |x|p = 1}, we denote by ω(x) the unique φ(qp)-th root of unity such

that

⟨x⟩ := x

ω(x) ∈ 1 + qpZp,

where φ is Euler’s totient function. Then, given y ∈ Q×
p , we put

ω(y) = pvp(y)ω
(

p−vp(y)y
)

and ⟨y⟩ = y

ω(y) = ⟨p−vp(y)y⟩ ∈ 1 + qpZp.

Remark 2.2. There is a canonical isomorphism Z×
p

∼= Rp × (1 + qpZp), which is precisely given by x 7→
(ω(x), ⟨x⟩), were Rp denotes the subgroup of φ(qp)-th unit roots of Zp. If p ≥ 3, we have

ω(x) = lim
n→∞

xpn

,
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and ω(x) is the unique (p − 1)-th root of unity that is congruent to x modulo p (see [42, Theorem 33.4]).
We deduce easily from the above that

ω(p−a + y) = p−aω(1 + ypa) = p−a ∈ Q(15)

for each integer a ≥ 0 and each y ∈ Qp with |y|p < pa. In the special case p = 2, either x or −x is congruent
to 1 modulo 4 = qp, and we set ω(x) = ±1, so that x is congruent to ω(x) modulo 4. Note that this last
definition differs from [42, Definition 33.3] (which would give ω(x) = 1 for each x ∈ Z×

2 ).

The p-adic Hurwitz zeta function. Recall that qp is defined in (7). We follow [12, Definition 11.2.5] for
the definition of the p-adic Hurwitz zeta function ζp(s, x).

Definition 2.3. For x ∈ Qp and s ∈ Cp \ {1} with |x|p ≥ qp and |s|p < qpp−1/(p−1), we define ζp(s, x) by
the equivalent formulas

ζp(s, x) = 1
s − 1

∫
Zp

⟨x + t⟩1−sdt = ⟨x⟩1−s

s − 1
∑
k≥0

(
1 − s

k

)
Bkx−k.

For a fixed x ∈ Qp with |x|p ≥ qp, the function s 7→ ζp(s, x) is the unique p-adic meromorphic function
on |s|p < qpp−1/(p−1) satisfying

ζp(1 − n, x) = −ω(x)−n Bn(x)
n

for each integer n ≥ 1. In addition, this function is analytic, except for a simple pole at s = 1 with residue 1
(see [12, Proposition 11.2.8]). Note that for p ≥ 3 the condition “x ∈ Qp with |x|p ≥ qp” simply means that
x ∈ Qp \ Zp.

The following identity (see [12, Proposition 11.5.6.]) (which is equivalent to (4)) combined with Theo-
rem 1.5 implies Theorem 1.6.

(16) ω(x)1−sζp(s, x) = (−1)s

(s − 1)!G
(s)
p (x) = (−1)s+1

(s − 1)! Rs(x) (x ∈ Qp, |x|p ≥ qp).

2.2 Padé approximation theory

Fix a field K of characteristic 0. For any subset S of a K-vector space V , we denote by ⟨S⟩K ⊆ V the
K-vector space generated by the elements of S. Given an integer n ≥ 0, we denote by K[z] the ring of
polynomials in z with coefficients in K, and by K[z]≤n ⊆ K[z] the subgroup of polynomials of degree at
most n.

Let us recall the definition of Padé-type approximants of Laurent series and their basic properties. We
denote by K[[1/z]] the ring of formal power series ring of variable 1/z with coefficients in K, and by K((1/z))
its field of fractions. We say that an element of K((1/z)), which can be written as

∞∑
k=−n

ak

zk
,

with n ∈ Z and ak ∈ K, is a formal Laurent series in 1/z. We define the order function at z = ∞ by

ord∞ : K((1/z)) −→ Z ∪ {∞};
∑

k

ak

zk
7→ min{k ∈ Z ∪ {∞} ; ak ̸= 0}.

with the convention min ∅ = ∞. In particular, for any f ∈ K((1/z)), we have ord∞ f = ∞ if and only if
f = 0.
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Given two K-vector spaces V and W , we denote by HomK(V, W ) the K-vector space of K-linear homo-
morphisms V → W . When V = W , we write EndK-lin(V ) = HomK(V, W ). Similarly, for any K-algebra A,
we define EndK-alg(A) as the K-vector space of K-algebra endomorphisms of A.

We recall, without proof, the following basic result from Padé approximation theory.

Lemma 2.4. Let m be a positive integer, f1, . . . , fm ∈ (1/z) · K[[1/z]] and n = (n1, . . . , nm) ∈ Nm.
Put N =

∑m
j=1 nj. For any non-negative integer M ≥ N , there exists a non-zero vector of polynomials

(P, Q1, . . . , Qm) ∈ K[z]m+1 satisfying the following conditions:

(i) deg P ≤ M ,

(ii) ord∞ (P (z)fj(z) − Qj(z)) ≥ nj + 1 for j = 1, . . . , m.

Definition 2.5. With the notation of Lemma 2.4, fix a non-zero vector of polynomials (P, Q1, . . . , Qm) ∈
K[z]m+1 satisfying the properties (i) and (ii).

• We say that (P, Q1, . . . , Qm) ∈ K[z]m+1 is a weight n and degree M Padé-type approximant of
(f1, . . . , fm).

• We call the remainders, namely the formal Laurent series (P (z)fj(z) − Qj(z))1≤j≤m, weight n degree
M Padé-type approximations of (f1, . . . , fm).

3 Modified formal transforms

Fix a field K of characteristic 0. We introduce a modified inverse Mellin transform MInv
K for formal power

series, and we study some of its properties. This transform will play a key-role in studying the properties of
the explicit Padé approximants constructed in Section 7. In the next section, we will compute the inverse
Mellin transform of some formal series connected to polygamma functions.

Formal series (examples). Fix α ∈ K. We define the following formal series of K[[z]] as usual

exp(z) =
∑
n≥0

zn

n! , log(1 + z) =
∑
n≥1

(−1)n−1

n
zn and (1 + z)α =

∞∑
k=0

(
α

k

)
zk,

where
(

α

k

)
= α(α − 1) · · · (α − k + 1)/k! (with the convention that

(
α

0

)
= 1). We also see 1/(z + α) as an

element of (1/z) · K[[1/z]] by writing

1
z + α

= 1
z

∑
n≥0

(
−α

z

)n

.

Difference and differential operators of K[[1/z]]. Given α ∈ K we denote by τα the α-shift operator, and
by ∆α = τα − 1 the α-difference operator of K((1/z)). Note that they stabilize K[[1/z]] and (1/z) · K[[1/z]].
They are defined for each f(z) ∈ K((1/z)) by

τα

(
f(z)

)
= f(z + α) and ∆α

(
f(z)

)
= f(z + α) − f(z).

Fix f(z) ∈ K((1/z)) and a sequence (an)n≥0 of elements in K. Then, the series∑
n≥0

an∆n
α

(
f(z)

)
and

∑
n≥0

an
dn

dzn
f(z)

9



converge in K((1/z)), since for each integer n ≥ 0, the formal series ∆n
α(f(z)) and dn

dzn f(z) belong to
(1/z)n+dK[[1/z]], where d = ord∞(f) ∈ Z. The sets K[[∆α]] and K[[d/dz]] are therefore subsets of the set
of EndK-lin

(
K((1/z))

)
. The above argument shows that they are also subsets of EndK-lin

(
(1/z) · K[[1/z]]

)
and EndK-lin(K[[1/z]]). The following result will be useful.

Lemma 3.1. For any α ∈ K, we have

exp
(

α
d

dz

)
= τα and exp

(
d

dz

)
− 1 = ∆1.(17)

So K[[d/dz]] = K[[∆1]],

log(1 + ∆1) = d

dz
and (1 + ∆1)α = τα.(18)

Proof. Since ∆1 = τ1 − 1, we only have to prove the first equality in (17). Write

D := exp
(

α
d

dz

)
=
∑
k≥0

αk

k!
dk

dzk
.

Let n ≥ 0 be an integer. A quick computation yields

D

(
1
zn

)
=
∑
k≥0

(−n)(−n − 1) · · · (−n − k + 1)
k!

αk

zn+k
= 1

zn

1
(1 + α/z)n

= 1
(z + α)n

= τα

(
1
zn

)
,

hence (17).

Formal Laplace transform and Stirling numbers. Following [8, p. 154], we define the (formal) modified
Laplace transform

LK : K[[z]] −→ K[[z]];
∞∑

k=0
ak

zk

k! 7→
∞∑

k=0
akzk.

Then LK is a homeomorphism of K[[z]] (with respect to the (z)-adic topology).
Given a pair of non-negative integers (k, n), we define S(n, k) as the number of ways of partitioning a set of

n elements into k non-empty sets. The numbers S(n, k) (sometimes denoted by
{n

k

}
, see [26]) are called

Stirling number of the second kind [46]. They satisfy the recurrence relation

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k) (k, n ≥ 1)(19)

with initial conditions S(0, 0) = 1 and S(n, 0) = S(0, n) = 0 for each n ≥ 1. They also have the following
generating functions

(ez − 1)n

n! =
∞∑

k=n

S(k, n)zk

k! and zn

(1 − z) · · · (1 − nz) =
∞∑

k=n

S(k, n)zk(20)

for each integer n ≥ 0 (see for example [32, Chapter V, §26-27]). The above identities can be obtained by
using (19). We deduce from (20) the following result.

Lemma 3.2. Let n be a non-negative integer. Then,

LK

(
(ez − 1)n

n!

)
= zn

(1 − z) · · · (1 − nz) .

10



Formal modified Mellin transform. The definition of our modified Mellin transforms are inspired by [4,
Définition 1] and [2, Section 7], see Remark 3.7 below. Recall that by Lemma 3.1, we have K[[d/dz]] =
K[[∆1]].

Definition 3.3. The correspondence z 7→ ∆1 = exp(d/dz) − 1 defines an isomorphism of K-algebra

M̂Inv
K : K[[z]] −→ K[[d/dz]].

When there is no ambiguity, we simply write M̂Inv = M̂Inv
K .

Example 3.4. We deduce from Lemma 3.1 that for any α ∈ K, we have

M̂Inv((1 + z)α
)

= τα and M̂Inv( log(1 + z)
)

= d

dz
.

Definition 3.5. We call modified inverse Mellin transform of power series the map

MInv
K : K[[z]] −→ (1/z) · K [[1/z]] ; g(z) 7→

∞∑
k=0

bk

(
−1

z

)k+1
,

where (bk)k≥0 is defined by g(ez − 1) =
∑∞

k=0 bkzk/k!. When there is no ambiguity, we simply write
MInv = MInv

K .

The transform MInv satisfies the following property.

Proposition 3.6. Let g(z) =
∑∞

k=0 akzk ∈ K[[z]]. Then,

MInv(g)(z) =
∞∑

k=0

(−1)k+1akk!
z(z + 1) · · · (z + k) .

Proof. Define the morphism

TK : K[[z]] −→ (1/z) · K [[1/z]] ; f(z) 7−→ −1
z

f
(

− 1
z

)
,

so that MInv(g)(z) = TK ◦ LK

(
g(ez − 1)

)
. By Lemma 3.2, we find

LK

(
g(ez − 1)

)
=

∞∑
k=0

akLK

(
g(ez − 1)k

)
=

∞∑
k=0

akk!zk

(1 − z) · · · (1 − kz) .

Then conclusion follows easily.

Remark 3.7. The ring of inverse factorial series (with complex coefficients) is

C[!z!] :=
{∑

n≥0

an

z(z + 1) · · · (z + n) ; an ∈ C
}

,

(it corresponds to the set C[!z!](0) with the notation of [2, Section 7.2]). Note that C[!z!] = (1/z) · C[[1/z]].
In [2, Section 7.2] and [4, Section 1.2], the authors consider the formal Mellin transform

M : C[!z!] −→ C[[1 − z]];
∑
n≥0

an

z(z + 1) · · · (z + n) 7−→
∑
n≥0

an
(1 − z)n

n! .

Proposition 3.6 implies that MInv
C = −M−1 ◦ T−1, where T−1 : C[[z]] → C[[1 − z]] is the isomorphism given

by z 7→ z − 1.
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We end this section with an analog of [4, Proposition 3], which establishes a relation between the formal
transforms M̂Inv and MInv.

Proposition 3.8. For any f(z), g(z) ∈ K[[z]], we have

MInv(f(z)g(z)
)

= M̂Inv(f(z))
(
MInv(g(z))

)
.(21)

This yields the following commutative diagram:

K[[z]] × K[[z]] M̂Inv×MInv

−−−−−−−−→ K [[d/dz]] × (1/z) · K [[1/z]]y y
K[[z]] MInv

−−−−→ (1/z) · K [[1/z]] .

Proof. Let g(z) =
∑∞

k=0 akzk ∈ K[[z]]. Since ∆1(1/(z)k+1) = −(k + 1)/(z)k+2 for each integer k ≥ 0, we
have

M̂Inv(z)(MInv(g)(z)) = ∆1

( ∞∑
k=0

(−1)k+1akk!
z(z + 1) · · · (z + k)

)
=

∞∑
k=0

(−1)k+2ak(k + 1)!
z(z + 1) · · · (z + k + 1)

= MInv(zg)(z),

the last equality coming from Proposition 3.6. By induction, we obtain M̂Inv(zn)(MInv(g)(z)) = MInv(zng)(z)
for each integer n ≥ 1. Hence (21) (by linearity).

4 Formal f-integration transform

We keep the notation of Sections 3. In this section, we introduce and study the properties of the transform
φf , which will play a crucial role in the construction of our Padé approximants (see [23, Section 2], [25,
Section 3] for other applications related to those maps).

4.1 Notation and definitions

Definition 4.1. We associate to any Laurent series f(z) =
∑∞

k=0fk/zk+1 ∈ (1/z) · K[[1/z]], a K-linear
morphism

φf : K[t] −→ K; tk 7→ fk (k ≥ 0).(22)

We call the map φf the formal f -integration transform.

Remark 4.2. In the case f(z) = − log(1 − 1/z), the map φf is simply the operator P (t) 7→
∫ 1

0 P (u)du,
which is the reason why we call it f -integration transform.

Note that the K-linear map

Φ : (1/z) · K[[1/z]] −→ HomK(K[t], K)

defined by f 7→ φf is an isomorphism. Given f ∈ (1/z) · K[[1/z]], the map φf extends naturally in a
K[z]-linear map φf : K[z, t] → K[z], and then to a K((1/z))-linear map φf : L → znK[[1/z]], where L

denotes ring which consists in all the elements of the form

F (z, t) =
∞∑

k=−n

Pk(t)
zk

,

12



with n ∈ Z and Pk(t) ∈ K[t]. Explicitly, for any element F (z, t) as above, we have

φf (F (z, t)) =
∑

k≥−n

φf (Pk(t))
zk

∈ znK[[1/z]].

With this notation, and seeing 1/(z − t) =
∑

k≥1 tk/zk+1 as an element of L, the formal Laurent series f(z)
satisfies the following crucial identities (confer [33, (6.2) p.60 and (5.7) p.52]):

f(z) = φf

(
1

z − t

)
, P (z)f(z) − φf

(
P (z) − P (t)

z − t

)
∈ (1/z) · K[[1/z]],

for any P (z) ∈ K[z]. Let us recall a condition, based on the morphism φf , for given polynomials to be Padé
approximants.

Lemma 4.3 (confer [23, Lemma 2.3]). Let m, M be positive integers, f1(z), . . . , fm(z) ∈ (1/z) · K[[1/z]] and
n = (n1, . . . , nm) ∈ Nm with

∑m
j=1 nj ≤ M . Let P (z) ∈ K[z] be a non-zero polynomial with deg P ≤ M ,

and put Qj(z) = φfj
((P (z) − P (t))/(z − t)) ∈ K[z] for 1 ≤ j ≤ m. The following assertions are equivalent.

(i) The vector of polynomials (P, Q1, . . . , Qm) is a weight n Padé-type approximants of (f1, . . . , fm).

(ii) We have tkP (t) ∈ ker φfj
for any pair of integers (j, k) with 1 ≤ j ≤ m and 0 ≤ k ≤ nj − 1.

Notation. In the next section, we will use the following operators. We use bold symbols to indicate when
a map is defined on the ring K[t] (in order to distinguish them from their analogues defined on K[z] in
Section 3). Fix an element α ∈ K.

• [P ] ∈ EndK-lin(K[t]) denotes the multiplication by the polynomial P ∈ K[t]. If there is no ambiguity,
we will sometimes omit the brackets.

• We denote by Evalt=α ∈ HomK(K[t], K) the α-evaluation linear form, and by τ α ∈ EndK-alg(K[t])
(resp. ∆α = τ α − [1] ∈ EndK-lin(K[t])) the α-shift (resp. α-difference) operator. They are given by

Evalt=α(P (t)) = P (α), τ α(P (t)) = P (t + α) and ∆α(P (t)) = P (t + α) − P (t),

for each P (t) ∈ K[t].

• For any f(z) ∈ K((1/z)), we denote by π(f(z)) the unique element of (1/z) · K[[1/z]] such that
f(z) − π(f(z)) ∈ K[z]. This defines a (surjective) projection

π : K((1/z)) −→ (1/z) · K[[1/z]].(23)

• The map ι : K[z, τα] −→ K[t, τ −α] is defined for each D =
∑

i[ai(z)] ◦ τα ∈ K[z, τα] by

D∗ := ι
(∑

i

[ai(z)] ◦ τα

)
=
∑

i

τ −α ◦ [ai(t)],

(this is a similar operator as the one in [1, Exercise III(3)]).

For any D ∈ K[z, τα], we view D and D∗ as elements of EndK-lin(K[t][[1/z]]) by setting for each f(z, t) =∑
n≥0 Pk(t)/zn ∈ K[t][[1/z]]

D(f(z, t)) =
∑
n≥0

Pk(t)D
(

1
zn

)
and D∗(f(z, t)) =

∑
n≥0

D∗(Pk(t))
zn

.
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4.2 Properties of the operators D and D∗

In the following lemma, we consider 1/(z − t) =
∑

k≥0 tk/zk+1 as an element of K[t][[1/z]].

Lemma 4.4. Let α ∈ K and D ∈ K[z, τα]. Then there exists a polynomial P (t, z) ∈ K[t, z] such that

D

(
1

z − t

)
= P (t, z) + D∗

(
1

z − t

)
.(24)

Proof. By linearity, it suffices to prove the statement of D = [zm]◦τn
α , where m, n are non-negative integers.

We have

τn
α

(
1

z − t

)
= τn

α

( ∞∑
k=0

tk

zk+1

)
=

∞∑
k=0

tk

(z + nα)k+1

=
∞∑

k=0

tk

zk+1

( ∞∑
ℓ=0

(−1)ℓ

(
k + ℓ

k

)(αn

z

)ℓ
)

=
∞∑

k=0

(t − nα)k

zk+1 ,

hence

D

(
1

z − t

)
= P (t, z) +

∞∑
k=0

(t − nα)k+m

zk+1 , where P (t, z) =
m−1∑
k=0

(t − nα)kzm−k−1.(25)

(with the convention that P (t, z) = 0 if m = 0). On the other hand

D∗
(

1
z − t

)
= τ n

−α ◦ [tm]
(

1
z − t

)
=

∞∑
k=0

(t − nα)k+m

zk+1 .

Combining the above with (25), we obtain (24). This completes the proof of the lemma.

4.3 Properties of the transform φf

Lemma 4.4 allows us to show the following key proposition.

Proposition 4.5. Let f(z) ∈ (1/z) · K[[1/z]] and D ∈ K[z, τα]. Then, viewing φπ(D(f)) and φf ◦ D∗ as
elements of HomK(K[t], K), we have

φπ(D(f)) = φf ◦ D∗.

Proof. Let P (t, z) ∈ K[t, z] be such that (24) of Lemma 4.4 holds. Then, writing P (z) = φf (P (t, z)) and
since φf acts only on the parameter t, we have

D(f(z)) = D ◦ φf

(
1

z − t

)
= φf

(
D

(
1

z − t

))
= P (z) + φf

(
D∗
(

1
z − t

))
= P (z) +

∞∑
k=0

φf (D∗(tk))
zk+1 .

This shows that

π(D(f)) =
∞∑

k=0
φf (D∗(tk))/zk+1 and φπ(D(f))(tk) = φf ◦ D∗(tk) for all k ≥ 0.

This completes the proof of Proposition 4.5.

We deduce several interesting consequences from Proposition 4.5.
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Corollary 4.6. Let f(z) ∈ (1/z) · K[[1/z]] and D ∈ K[z, τα] \ {0}. The following assertions are equivalent.

(i) D(f(z)) ∈ K[z].

(ii) D∗(K[t]) ⊆ ker φf .

Proof. Conditions (i) and (ii) are equivalent to π(D(f)) = 0 and φf ◦ D∗ = 0, respectively. Those last two
assertions are clearly equivalent by Proposition 4.5.

Corollary 4.7. Let f(z) ∈ (1/z) · K[[1/z]] and α ∈ K, and set g(z) = τα(f(z)) ∈ (1/z) · K[[1/z]]. Then

φg = φf ◦ τ −α.

Proof. As discussed at the beginning of Section 3, we have g(z) ∈ (1/z) · K[[1/z]], so that π(g(z)) = g(z).
Set D = τα. By definition D∗ = τ −α, and we conclude by Proposition 4.5.

We also deduce from Proposition 4.5 the following results.

Lemma 4.8. Let f ∈ (1/z) · K[[1/z]] and write

f(z) =
∑
k≥0

akk!
z(z + 1) · · · (z + k) .

Then, for each j ≥ 0, we have

φf

(
(t)j

j!

)
= aj .

Proof. Recall that π : K[z][[1/z]] → (1/z) · K[[1/z]] is the morphism defined in (23). Fix an integer j ≥ 0
and set D = (z)j/j!. Then D∗ = (t)j/j!, and Proposition 4.5 gives

φf

(
(t)j

j!

)
= φf (D∗(1)) = φπ(D(f))(1).(26)

On the other hand, since (z)j/(z)k+1 ∈ K[z] for k = 0, . . . , j − 1, we have

π(D(f)) = 1
j!

∞∑
k=j

akk!
(z + j)(z + j + 1) · · · (z + k) ∈ aj

z
+ 1

z2 K[[1/z]],

hence φπ(D(f))(1) = aj . Combined with (26), this proves the lemma.

Combined with Proposition 3.6, the above lemma has the following consequence.

Corollary 4.9. Let g(z) =
∑∞

k=0 akzk ∈ K[[z]], and set f(z) = MInv(g)(z) ∈ (1/z) · K[[1/z]]. For each
j ≥ 0, we have

φf

(
(t)j

j!

)
= (−1)j+1aj .

5 Mellin transform and p-adic polygamma functions

We keep the notation of Section 3. Denote by MInv = MInv
K the inverse modified Mellin transform (see

Definition 3.5). In this section, we introduce and study a family of formal series Rα,s(z) ∈ (1/z) · K[[1/z]]
connected to the p-adic polygamma functions. We also prove that the series Rα,s satisfies a rather simple
difference equation.
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Definition 5.1. Given an integer s ≥ 2 and α ∈ K, set

Rα,s(z) = MInv
(

(1 + z)α logs−1(1 + z)
z

)
,

Rα,1(z) = MInv
(

(1 + z)α − 1
z

)
.

For α = 0, we simply write

Rs(z) = R0,s(z) = MInv
(

logs−1(1 + z)
z

)
.

In the following lemma we show that Rs(z) ∈ (1/z) · K[[1/z]] is the formal series corresponding to the
series (14) of the p-adic polygamma functions, which is why we are using the same notation.

Lemma 5.2. With the notation of Definition 5.1, we have

Rs(z) =
∞∑

k=s−2
(k − s + 3)s−2Bk−s+2 · (−1)k+1

zk+1 ,

Rα,s(z) = τα(Rs(z)) = Rs(z + α),

Rα,1(z) =
∞∑

k=0

Bk+1(α) − Bk+1

k + 1 · (−1)k+1

zk+1 .

Furthermore

(i) The series Rα,s(x) converges p-adically for each x, α ∈ Cp with |x + α|p > 1.

(ii) The series Rα,1(x) converges p-adically for each x, α ∈ Cp with |x|p > |α|p.

Proof. Write g(z) = logs−1(1+z)/z so that Rs(z) = MInv(g)(z). Using the generating function of Bernoulli
numbers (9), we find

g(ez − 1) = zs−1

ez − 1 =
∞∑

k=s−2
(k − s + 3)s−2Bk−s+2 · zk

k! .

The expansion of Rs(z) follows from the definition of MInv. The second identity is then a direct consequence
of Lemma 5.3 below. For the third identity, write h(z) =

(
(1 + z)α − 1

)
/z. Again, using (9), we find

h(ez − 1) = eαz − 1
ez − 1 = 1

z

∞∑
k=0

(
Bk(α) − Bk

)
· zk

k! =
∞∑

k=0

(
Bk+1(α) − Bk+1

)
· zk

(k + 1)! .

The expected formula follows from the definition of MInv, since Rα,1(z) = MInv(h)(z). The convergence in
Cp of the series Rα,s(x) and Rα,1(x) is a consequence of (11).

We deduce from Proposition 3.8 the following crucial identities.

Lemma 5.3. Let g(z) =
∑

n≥0 anzn ∈ K[[z]] and α ∈ K. We have

MInv( log(1 + z)g
)
(z) = d

dz

(
MInv(g)(z)

)
,

MInv((1 + z)αg
)
(z) = τα(MInv(g)(z)),

MInv(((1 + z)α − 1)g
)
(z) = ∆α(MInv(g)(z)).
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Proof. This follows from Proposition 3.8 combined respectively with

M̂Inv(log(1 + z)) = d/dz and M̂Inv((1 + z)α) = τα

coming from Lemma 3.1.

Proposition 5.4 (Difference equation of the Laurent series Rα,s). Let s ≥ 2 be an integer and α ∈ K. We
have

∆1(Rα,1(z)) = α

z(z + α) and ∆1(Rα,s(z)) = (−1)s(s − 1)!
(z + α)s

.(27)

Proof. According to Proposition 3.8, and since ∆1 = M̂Inv(z), we have

∆1(Rα,1(z)) = M̂Inv(z)
(
MInv

(
(1 + z)α − 1

z

))
= MInv ((1 + z)α − 1) = ∆α(MInv(1)),

the last inequality coming from Lemma 5.3. Combined with MInv(1) = −1/z, this yields the first equality
of (27). We proceed in a similar way for the second equality. Note that since Rα,s = τα(Rs(z)) and
∆1 ◦ τα = τα ◦ ∆1, we only have to prove the case α = 0. Using Proposition 3.8, we obtain

∆1(Rs(z)) = M̂Inv(z)MInv
(

logs−1(1 + z)
z

)
= MInv (logs−1(1 + z)

)
= ds−1

dzs−1M
Inv(1),

the last equality coming from the first identity of Lemma 5.3. We conclude by using MInv(1) = −1/z.

6 Properties of the difference operator

We keep the notation of Section 4. Recall that for any P (t) ∈ K[t], we denote by [P ] the operator “multipli-
cation by P (t)”. The difference operator ∆−1 = τ −1 − [1] will be involved in the construction of the Padé
approximants in Section 7. This motivates us to study its properties.

Lemma 6.1. For any positive integer n and for any polynomial P (t) ∈ K[t], we have

∆n
−1 ◦ [P (t)] =

n∑
k=0

(
n

k

)[
τ k

−1 ◦ ∆n−k
−1 (P (t))

]
◦ ∆k

−1.

Proof. Let P (t), Q(t) ∈ K[t]. We proceed by induction on n. For n = 1, we easily check that

∆−1
(
P (t)Q(t)

)
= ∆−1(P (t)) · Q(t) + τ −1(P (t)) · ∆−1(Q(t)).

Suppose now that the lemma is true for a positive integer n. Then

∆n+1
−1
(
P (t)Q(t)

)
= ∆n

−1

(
∆−1

(
P (t)Q(t)

))
= ∆n

−1

(
∆−1(P (t)) · Q(t) + τ −1(P (t)) · ∆−1(Q(t))

)
.

We then get the result by applying the induction hypothesis with the pairs of polynomials
(
∆−1(P (t)), Q(t)

)
and

(
τ −1(P (t)), ∆−1(Q(t))

)
(and by using the commutativity of ∆−1 and τ −1).

Lemma 6.2. Let n be a positive integer. For any polynomial P (t) ∈ K[t], we have

[P (t)] ◦ ∆n
−1 =

n∑
j=0

(
n

j

)
∆n−j

−1 ◦
[
τ n−j

1 ◦ ∆j
1(P (t))

]
.
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Proof. We proceed by induction on n. For n = 1, a direct computation ensures that for any polynomial
P (t) ∈ K[t], we have

[P (t)] ◦ ∆−1 = ∆−1 ◦ [τ 1(P (t))] + [∆1(P (t))].(28)

Let n ≥ 1 be such that the assertion is true, and P (t) ∈ K[t]. By our induction hypothesis,

[P (t)] ◦ ∆n+1
−1 =

n∑
j=0

(
n

j

)
∆n−j

−1 ◦
[
τ n−j

1 ◦ ∆j
1(P (t))

]
◦ ∆−1

=
n∑

j=0

(
n

j

)
∆n−j

−1 ◦
(

∆−1 ◦
[
τ n+1−j

1 ◦ ∆j
1(P (t))

]
+
[
τ n−j

1 ◦ ∆j+1
1 (P (t))

])
(29)

=
n+1∑
j=0

(
n + 1

j

)
∆n+1−j

−1 ◦
[
τ n+1−j

1 ◦ ∆j
1(P (t))

]
,

where we obtain (29) by applying (28) to the polynomial τ n−j
1 ◦ ∆j

1(P (t)), and by using the commutativity
of ∆1 and τ 1. This concludes our induction step.

Lemma 6.3. Let n, d, m1, . . . , md be non-negative integers with n, d ≥ 1, and α1, . . . , αd ∈ K. Set

A(t) =
d∏

i=1
(t + αi)mi+1 and An(t) =

d∏
i=1

(t + αi)mi+1
n .

Suppose that P (t) ∈ An(t)K[t]. Then, we have the following properties.

(i) For each k = 0, . . . , n − 1, we have

∆k
−1(P (t)) ∈ A(t)K[t].

(ii) For any polynomial Q(t) ∈ K[t], we have

Q(t)∆n
−1(P (t)) ∈ ∆−1

(
A(t)K[t]

)
+ P (t)∆n(Q(t)).

(iii) For any polynomial Q(t) ∈ K[t] with deg Q(t) < n, we have

Q(t)∆n
−1(P (t)) ∈ ∆−1

(
A(t)K[t]

)
.

Proof. (i). Recall the identity ∆k
−1 =

∑k
i=0
(

k
i

)
(−1)k−iτ i

−1. Write P (t) = An(t)R(t), with R(t) ∈ K[t],
and fix an integer k with 0 ≤ k < n. Then, we obtain

∆k
−1(P (t)) =

k∑
i=0

(
k

i

)
(−1)k−iR(t − i)

d∏
j=1

(t + αj − i)mj+1
n .(30)

We conclude by noticing that since k < n, for each 0 ≤ i ≤ k, the polynomial
∏d

j=1(t + αj − i)mj+1
n is

divisible by
∏d

j=1(t + αj)mj+1 = A(t).

(ii). Fix a polynomial Q(t) ∈ K[t], and define

Rj(t) = P (t) · τ n−j
1 ◦ ∆j

1
(
Q(t)

)
∈ An(t)K[t]

for j = 0, . . . , n − 1. By Lemma 6.2, we have

Q(t)∆n
−1(P (t)) = ∆−1

( n−1∑
j=0

(
n

j

)
∆n−1−j

−1
(
Rj(t)

))
+ P (t)∆n

1 (Q(t)).

Applying (i) to the polynomial Rj(t), we find ∆n−1−j
−1

(
Rj(t)

)
∈ A(t)K[t] for j = 0, . . . , n − 1, hence (ii).

Finally, (iii) is a direct consequence of (ii), since ∆n
1 (Q(t)) = 0 as soon as deg Q(t) < n.
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7 Construction of Padé approximants

We keep the notation of Sections 3 and 4. This section is devoted to the explicit construction of Padé-type
approximants for the Laurent series Rα,s(z) introduced in Section 5. Let d, m1, . . . , md be positive integers
and α = (α1, · · · , αd) ∈ Kd with α1 = 0. Denote by S the set of indices

S = {(i, s) ; 1 ≤ i ≤ d and 1 ≤ s ≤ mi + 1} \ {(1, 1)},

and set

M = #S = d − 1 +
d∑

i=1
mi.

For simplicity, for any α ∈ Q and any positive integer s, we write

φα,s = φRα,s ,(31)

where Rα,s(z) as in Definition 5.1. We also introduce the following formal series of K[[z]].

Definition 7.1. For any (i, s) ∈ S, set

gi,s(z) :=
∞∑

k=0
ai,s,kzk =


(1 + z)αi logs−1(1 + z)

z
if s ≥ 2

(1 + z)αi − 1
z

if i ≥ 2 and s = 1.

If follows easily from that definition that a1,s,0 = · · · = a1,s,s−3 = 0, and

ai,s,k =



∑
ℓi≥0

ℓ1+···+ℓs−1=k−s+2

(−1)k−s+2

(ℓ1 + 1) · · · (ℓs−1 + 1) if i = 1 and s ≥ 2 and k ≥ s − 2,

k∑
j=0

(
αi

j

)
a1,s,k−j if i ≥ 2 and s ≥ 2,(

αi

k + 1

)
if i ≥ 2 and s = 1.

(32)

We will bound from above the absolute value of the coefficients ai,s,k at the end of the present section.
Their p-adic absolute values are estimated in the proof of Lemma 9.5, while their denominators are studied
in Lemma 9.7. We have the following key-properties.

Lemma 7.2. For each (i, s) ∈ S and each integer k ≥ 0, we have

Rαi,s(z) = MInv(gi,s) and φαi,s

(
(t)k

k!

)
= (−1)k+1ai,s,k.

Proof. The first part is simply equivalent to the definition of Rαi,s. Then, we deduce the last part as a
consequence of Corollary 4.9.

Theorem 7.3. Let ℓ, n be non-negative integers with 0 ≤ ℓ ≤ M . For any (i, s) ∈ S, define the polynomials

An,ℓ(z) = Aℓ(z) = (−1)ℓ (z)ℓ

ℓ!

d∏
j=1

(
(−1)n (z + αj)n

n!

)mj+1
,

Pn,ℓ(z) = Pℓ(z) = ∆n
−1 (Aℓ(z)) ,(33)

Qn,i,s,ℓ(z) = Qi,s,ℓ(z) = φαi,s

(
Pℓ(z) − Pℓ(t)

z − t

)
.(34)
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(i) The vector of polynomials
(
Pn,ℓ(z), Qn,i,s,ℓ(z)

)
(i,s)∈S forms a weight (n, . . . , n) ∈ NM Padé-type ap-

proximant of
(
Rαi,s(z)

)
(i,s)∈S .

(ii) We have the explicit formulas

Pn,ℓ(z) =
n∑

k=0

(
n

k

)
(−1)n−k+ℓ (z − k)ℓ

ℓ! A0(z − k) =
Mn+ℓ∑

j=0
pn,j,ℓ

(z)j

j! ,

Qn,i,s,ℓ(z) =
Mn+ℓ∑

j=1
pn,j,ℓ

(
j−1∑
k=0

(−1)k+1ai,s,k · k!
(z)k+1

)
(z)j

j! ,

where for each integer j with 0 ≤ j ≤ Mn + ℓ, the coefficient pn,j,ℓ is given by

pn,j,ℓ = pj,ℓ =
j+n∑
k=n

(
j + n

k

)
(−1)n−k

(
k

ℓ

) d∏
r=1

(
k − αr

n

)mr+1
.

(iii) For each (i, s) ∈ S, denote by

Rn,i,s,ℓ(z) = Ri,s,ℓ(z) = Pn,ℓ(z)Rαi,s(z) − Qn,i,s,ℓ(z)

the Padé approximation of Rαi,s. Then

Rn,i,s,ℓ(z) =
∞∑

k=n

k!
(k − n)!

φαi,s ((t + n)k−nAn,ℓ(t))
z(z + 1) · · · (z + k) .

Remark 7.4. In the case of d = 1 and ℓ = 0, explicit Padé approximants of R2(z) have been studied by
T. J. Stieltjes [45], J. Touchard [47] and L. Carlitz [10] (confer [35] and [7, Section 8]).

It is worth mentioning that our construction relies on the difference equation (27) satisfied by Rαi,s(z). We
will establish it through a difference analogue of the classical Rodrigues formula for orthogonal polynomials.
In order to use Lemma 4.3, we will study the kernel of φαi,s. The methodology we present below investigates
the Rodrigues formula for orthogonal polynomial systems, as discussed in [23], in the context of a difference
equation.

Fix (i, s) ∈ S. According to (27) the Laurent series Rαi,s(z) satisfies the following difference equation:

(z + αi)s∆1(Rαi,s(z)) = (−1)s(s − 1)! if s ≥ 2,

z(z + αi)∆1(Rαi,1(z)) = αi if i ≥ 2.

Applying Corollary 4.6 to D = [(z + αi)s] ◦ ∆1 and D = [z(z + αi)] ◦ ∆1, we deduce from the above relation
that

∆−1
(
(t + αi)sK[t]

)
) ⊆ ker φαi,s if s ≥ 2,(35)

∆−1
(
t(t + αi)K[t]

)
⊆ ker φαi,1 if i ≥ 2.(36)

The exact kernel of φαi,s will be determined in the next section, see Lemmas 8.4 and 8.5.

Lemma 7.5. Let n, ℓ be integers with 1 ≤ n and 0 ≤ ℓ ≤ M . Then, for any (i, s) ∈ S, we have

tkPn,ℓ(t) ∈ ker φαi,s (0 ≤ k ≤ n − 1).(37)
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Proof. Lemma 6.3 (iii) implies that for k = 0, . . . , n − 1, we have

tkPn,ℓ(t) = [tk] ◦ ∆n
−1(An,ℓ(t)) ∈ ∆−1 ◦ [A(t)](K[t]),

where A(t) =
∏d

r=1(t + αr)mr+1. Combining the above with (35) and (36) (and since α1 = 0) we deduce
(37).

Proof of Theorem 7.3 (i). The polynomial An,ℓ(z) has degree n(M +1)+ ℓ. The equality deg ∆−1(P ) =
deg P − 1 valid for any P ∈ K[z], implies that deg Pn,ℓ(z) = Mn + ℓ. We conclude by combining Lemma 7.5
and 4.3.

Lemma 7.6. For any polynomial A(z) ∈ K[t] and any integer n ≥ 0, we have

A(z) =
∑
j≥0

(−1)jpj
(z)j

j! ,(38)

∆n
−1(A(z)) =

n∑
i=0

(
n

i

)
(−1)n−iA(z − k) =

∑
j≥0

(−1)jpj+n
(z)j

j! ,(39)

where

pj = Evalz=0 ◦ ∆j
−1(A(z)) =

j∑
i=0

(
j

i

)
(−1)j−iA(−i).(40)

Proof. The first equality of (39) and the second equality of (40) come from the identity ∆j
−1 =

∑j
i=0
(

j
i

)
(−1)j−iτ i

−1.
We deduce (38) with pj = Evalz=0 ◦ ∆j

−1(A(z)) by using

∆−1

(
(−1)j (z)j

j!

)
= (−1)j−1 (z)j−1

(j − 1)! (j ≥ 1).

The last equality of (39) is obtained in a similar way.

Lemma 7.7. For each integer j ≥ 0, we have

(z)j − (t)j

z − t
= (z)j

j−1∑
k=0

(t)k

(z)k+1
.

Proof. We proceed by induction on j. For j = 0, both sides are equal to 0. For the induction step, it
suffices to use the identity

(z)j+1 − (t)j+1

z − t
= (z + j)

(
(z)j − (t)j

z − t

)
+ (t)j .

Proof of Theorem 7.3 (ii). By Lemma 7.6, we have

Aℓ(z) =
n(M+1)+ℓ∑

j=0
aℓ,j(−1)j (z)j

j!

where

aℓ,j =
j∑

i=0

(
j

i

)
(−1)j−iAℓ(−i) =

j∑
i=n

(
j

i

)
(−1)j−i

(
i

ℓ

) d∏
k=1

(
i − αk

n

)mk+1
,(41)
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where Aℓ(−i) = 0 for each i < n (since α1 = 0). The expected formula for Aℓ(z) follows. Lemma 7.6
together with (41) gives the explicit formula for Pℓ(z) = ∆n

−1(Aℓ(z)). Finally, using Lemma 7.7, we find

Qi,s,ℓ = φαi,s

(
P (z) − P (t)

z − t

)
=

Mn+ℓ∑
j=0

pj,ℓ

j! φαi,s

(
(z)j − (t)j

z − t

)
=

Mn+ℓ∑
j=1

pj,ℓ

j! (z)j

j−1∑
k=0

k!
(z)k+1

φαi,s

(
(t)k

k!

)
,

and we conclude by Lemma 7.2. This completes the proof of Theorem 7.3 (ii).

Proof of Theorem 7.3 (iii). Fix (i, s) ∈ S and for simplicity, set f(z) = Ri,s,ℓ(z). Write

f(z) =
∞∑

k=n

ri,s,ℓ,kk!
z(z + 1) · · · (z + k)

(which is possible since according to Theorem 7.3 (i), the pair
(
Pℓ(z), Qi,s,ℓ(z)

)
is a weight n Padé-type

approximant of
(
Rαi,s(z)). According to Lemma 4.8, we have ri,s,ℓ,k = φf ((t)k/k!), so that it only remains

to prove that

φf

(
(t)k

k!

)
= φαi,s

(
(t + n)k−nAℓ(t)

(k − n)!

)
(42)

for each k ≥ n. Set D = Pℓ(z). Then D∗ = Pℓ(t), and since Ri,s,ℓ = π(PℓRαi,s) = π(D(Rαi,s)), Proposi-
tion 4.5 yields

φf

(
(t)k

k!

)
= φπ(D(Rαi,s))

(
(t)k

k!

)
= φαi,s

(
(t)k

k! Pℓ(t)
)

= φαi,s

([
(t)k

k!

]
◦ ∆n

−1(Aℓ(t))
)

.

Using Lemma 6.3 (ii),[
(t)k

k!

]
◦ ∆n

−1(Aℓ(t)) ∈ ∆−1 ◦ [A(t)](K[t]) +
[
∆n

1

(
(t)k

k!

)]
(Aℓ(t)),

where A(t) =
∏d

j=1(t + αj)mj+1. By Eqs. (35) and (36), we have ∆−1 ◦ [A(t)](K[t]) ⊆ ker φαi,s. Finally, we
deduce that

φf

(
(t)k

k!

)
= φαi,s

([
∆n

1

(
(t)k

k!

)]
(Aℓ(t))

)
,

and we conclude by using the identity ∆n
1 ((t)k/k!) = (t + n)k−n/(k − n)!.

Absolute value of the coefficients ai,s,k. We end this section by estimating roughly the absolute value
of the coefficients ai,s,k appearing in Definition 7.1. In the proof of Lemma 9.5 we will estimate their p-adic
absolute value. We start by estimating the binomial coefficients.

Lemma 7.8. Let k ≥ 0 be an integer and α ∈ C. We have

|(α)k|
k! ≤

{
e|α|−1k|α|−1 if |α| > 1 and k > 0,

(k + 1)−(1−|α|) if |α| ≤ 1 or k = 0.

In particular ∣∣∣∣(α

k

)∣∣∣∣ ≤ (|α|)k

k! ≤ e|α|k|α|.(43)

Proof. We may assume that k > 0 since
(

α
0
)

= 1. Then, using the inequality (1 + x) ≤ ex valid for each
x ∈ [−1, ∞), we get ∣∣∣∣(α

k

)∣∣∣∣ ≤ (|α|)k

k! =
k∏

j=1

(
1 + |α| − 1

j

)
≤ exp

( k∑
j=1

|α| − 1
j

)
.
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We obtain the expected upper bounds by combining the above with the estimates

log(k + 1) ≤
k∑

j=1

1
j

≤ 1 + log k,

and by distinguishing between the case |α| − 1 ≤ 0 and the case |α| − 1 > 0.

Lemma 7.9. Let (i, s) ∈ S and k ≥ 0 be an integer. Then

|ai,s,k| ≤ e|αi|(k + 1)s+|αi|.

Proof. First, suppose i = 1. Then s ≥ 2 and α1 = 0, and using (32) we obtain the crude estimate

|a1,s,k| ≤ #
{

(ℓ1, . . . , ℓs) ∈ Zs−1
≥0 ; ℓ1 + · · · + ℓs−1 = k − s + 2

}
≤ (k + 1)s−1.(44)

We now assume that i ≥ 2. If s = 1, then using (43) of Lemma 7.8 together with (32), we obtain

|ai,1,k| =
∣∣∣( αi

k + 1

)∣∣∣ ≤ e|αi|(k + 1)|αi|.(45)

If s ≥ 2, we combine again (32) with (44) and (43) of Lemma 7.8 to get

|ai,s,k| =
∣∣∣ k∑

j=0

(
αi

j

)
a1,s,k−j

∣∣∣ ≤ e|αi|(k + 1)s+|αi|.(46)

8 Kernel of the formal integration maps

One of the crucial steps in proving our main Theorem 1.5 is to show that the Padé approximants constructed
in Section 7 are linearly independent. In other words, we need the matrix, whose entries are formed by the
Padé approximants, to be non-singular. This will be a consequence of the theorem below, which is the main
result of this section.

We keep the notation of Section 4. Recall that the functions Rα,s (which are related to the polygamma
functions) are introduced in Definition 5.1, and that the function Φ : f 7→ φf is defined in Section 4.1.

Definition 8.1. Given α ∈ K and an integer s ≥ 1, we denote by φα,s the morphism Φ(Rα,s). In the case
α = 0 and s ≥ 2, we simply write φs = Φ(Rs).

The following property will be useful when dealing with the functions φα,s.

Lemma 8.2. Let α ∈ K and s ≥ 2 an integer. Then

φα,s = φs ◦ τ −α.

Proof. This is a direct consequence of Corollary 4.7 (since by definition Rα,s = τα(Rs)).

Theorem 8.3. Let d ≥ 1 be an integer and m1, . . . , md ≥ 0 be integers, with m1 ≥ 1. Set M = m1 + · · · +
md + d − 1 and

S = {(i, s) ; 1 ≤ i ≤ d and 1 ≤ s ≤ mi + 1} \ {(1, 1)}.

Fix non-negative integers N0, . . . , Nd. For j = 1, . . . , d, let

r(j) =
(
r

(j)
0 , . . . , r

(j)
Nj

)
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be a (Nj + 1)-tuple of integers with

mj + 1 ≥ r
(j)
0 ≥ · · · ≥ r

(j)
Nj

≥ 0,(47)

and define

A(t) =
d∏

j=1
Bj(t + αj), where Bj(t) =

Nj∏
i=0

(t + i)r
(j)
i .

Let α1, . . . , αd ∈ K satisfying the condition α1 = 0 and

αi − αj /∈ Z for any distinct indices i, j ∈ {1, . . . , d}.(48)

Then, the following M × M matrix is non-singular

M :=
(

φαi,s(tℓA(t)
)

(i,s)∈S
0≤ℓ<M

=



φα1,2
(
A(t)

)
φα1,2

(
tA(t)

)
· · · φα1,2

(
tM−1A(t)

)
...

... · · ·
...

φα1,m1+1
(
A(t)

)
φα1,m1+1

(
tA(t)

)
· · · φα1,m1+1

(
tM−1A(t)

)
φα2,1

(
A(t)

)
φα2,1

(
tA(t)

)
· · · φα2,1

(
tM−1A(t)

)
...

... · · ·
...

φα2,m2+1
(
A(t)

)
φα2,m2+1

(
tA(t)

)
· · · φα2,m2+1

(
tM−1A(t)

)
...

... · · ·
...

φαd,1
(
A(t)

)
φαd,1

(
tA(t)

)
· · · φαd,1

(
tM−1A(t)

)
...

... · · ·
...

φαd,md+1
(
A(t)

)
φαd,md+1

(
tA(t)

)
· · · φαd,md+1

(
tM−1A(t)

)



.

The strategy of our proof is as follows. We easily show that any point in the kernel of M gives rise to a
polynomial Q(t) ∈ K[t] of degree ≤ M − 1 satisfying

Q(t)A(t) ∈
⋂

(i,s)∈S

ker φαi,s.

The core of the demonstration of the theorem consists in expressing the above subspace as the image by the
operator ∆−1 of a rather simple ideal of K[t] (see Section 8.1). This will allow us in Section 8.2 to prove
that a non-zero polynomial Q(t) as above has degree at least M , hence a contradiction if Q(t) ̸= 0.

8.1 Study of the kernels

We keep the notation of Section 4.1 for the operators ∆α, τα and the linear maps φα,s = Φ(Rα,s). We start
by expressing the kernel of the linear maps φα,s in a simple way.

Lemma 8.4. Let s ≥ 2 be an integer and fix a shift α ∈ K.

(i) We have

φα,s ◦ ∆−1 = (−1)sEvalt=−α ◦
(

d

dt

)s−1
.

(ii) The kernel of φα,s is

ker φα,s = ∆−1 ◦ τ α

(〈
t, . . . , ts−2, ts, ts+1, . . .

〉
K

)
.(49)
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(iii) For any non-negative integer m, we have

m+1⋂
s=2

ker φα,s = ∆−1
(
(t + α)m+1K[t]

)
.(50)

with the convention that the left-hand side is equal to K[t] if m = 0.

Proof. Since by Lemma 8.2 we have φα,s = φs ◦ τ −α, and since ∆−1 commutes with any shift operator, it
suffices to prove the lemma when α = 0. Proposition 4.5 gives φs◦∆−1 = φ∆1(Rs). Eq. (27) of Proposition 5.4
and a direct computation yield

φ∆1(Rs) = (−1)s(s − 1)!φ1/zs = (−1)sEvalt=0 ◦
(

d

dt

)s−1
.

Hence (i). We deduce that

H := ∆−1

(
ker Evalt=0 ◦

(
d

dt

)s−1
)

= ∆−1
(〈

t, . . . , ts−2, ts, ts+1, . . .
〉

K

)
⊆ ker φ0,s.

Since H is an hyperplane of K[t] and φs is a non-zero linear form, the above inclusion is an equality, and
(49) follows. Eq. (50) is a consequence of (49). If m = 0, we simply have ∆−1

(
(t + α)K[t]

)
= K[t].

Lemma 8.5. Fix a shift α ∈ K\{0}.

(i) We have

φα,1 ◦ ∆−1 = Evalt=0 − Evalt=−α.(51)

(ii) The kernel of φα,1 is

ker φα,1 = ∆−1

(
t(t + α)K[t]

)
Remark 8.6. Note that φ0,1 = 0, so that ker φ0,1 = K[t].

Proof. (i). Proposition 4.5 yields φα,1 ◦∆−1 = φ∆1(Rα,1). Combining this with Eq. (27) of Proposition 5.4,
we deduce that φ∆1(Rα,1) = φf , where

f(z) = α

z(z + α) = 1
z

− 1
z + α

.

We conclude by noting that φ1/z = Evalt=0, and φ1/(z+α) = φ1/z ◦ τ −α by Corollary 4.7.

(ii). Eq. (51) easily implies that

H := ∆−1
(
t(t + α)K[t]

)
⊆ ker φα,1

(note that this is also a consequence of (36)). Since H is a hyperplane of K[t] and φα,1 ̸= 0, the above
inclusion is an equality.

We now establish a generalization of Eq. (50) of Lemma 8.4 by taking into account several shifts simul-
taneously.

Lemma 8.7. Let d, m1, . . . , md be non-negative integers with d ≥ 1. Let α1, . . . , αd be pairwise distinct
elements of K, with α1 = 0. We have

d⋂
i=1

(
mi+1⋂
s=1

ker φαi,s

)
= ∆−1

(
tm1+1(t + α2)m2+1 · · · (t + αd)md+1K[t]

)
.
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Proof. By Lemma 8.4 (iii) and Lemma 8.5 (ii), we have to prove that the two following subspaces

V :=
d⋂

i=1
∆−1

(
(t + αi)mi+1K[t]

) d⋂
i=2

∆−1

(
t(t + αi)K[t]

)
,

W := ∆−1

( d∏
i=1

(t + αi)mi+1K[t]
)

,

are equal. The inclusion W ⊆ V is trivial. Now, fix P (t) ∈ V , and let us prove that P (t) ∈ W . Since
P (t) ∈ ∆−1

(
tm1+1K[t]

)
, there exists Q(t) ∈ K[t] such that

P (t) = ∆−1

(
tm1+1Q(t)

)
.

To conclude, it suffices to prove that
∏d

i=2(t + αi)mi+1 divides Q(t). Given i ∈ {2, . . . , d}, there exist
Ri(t), Si(t) ∈ K[t] such that

P (t) = ∆−1

(
(t + αi)mi+1Ri(t)

)
= ∆−1

(
t(t + αi)Si(t)

)
.

Since ker ∆−1 = K ⊆ K[t], we deduce the existence of ai, bi ∈ K satisfying

t(t + αi)Si(t) = (t + αi)mi+1Ri(t) + ai = tm1+1Q(t) + bi.

Evaluating at t = −αi and t = 0, we find ai = bi = 0, so that

tm1+1Q(t) = (t + αi)mi+1Ri(t).

As αi ̸= 0, it follows that (t + αi)mi+1 divides Q(t). Since the αi’s are all distinct, we deduce that the
polynomial

∏d
i=2(t + αi)mi+1 divides Q(t). Hence P (t) ∈ W .

8.2 Proof of Theorem 8.3

Lemma 8.8. Fix two non-negative integers N, m. Let r = (r0, . . . , rN ) be a (N +1)-tuple of integers satisfying
m + 1 ≥ r0 ≥ · · · ≥ rN ≥ 0, and define

Br(t) =
N∏

i=0
(t + i)ri .

(i) Let Q(t), R(t) ∈ K[t] be two polynomials satisfying Q(t)Br(t) = ∆−1
(
tm+1R(t)

)
. Then the polynomial

Br(t + 1) divides R(t).

(ii) We have

Br(t)K[t] ∩ ∆−1

(
tm+1K[t]

)
= ∆−1

(
tm+1Br(t + 1)K[t]

)
.

Proof. For simplicity, write A(t) = Br(t). We may assume that Q(t) and R(t) are non-zero, otherwise (i)
is automatic. By induction on k, let us prove that (t + k + 1)rk is a factor of R(t) for i = 0, . . . , N . By
hypothesis, we have

Q(t)A(t) = ∆−1(tm+1R(t)) = (t − 1)m+1R(t − 1) − tm+1R(t).(52)

Since tr0 divides A(t) and tm+1R(t) (since r0 ≤ m + 1), necessarily tr0 also divides (t − 1)m+1R(t − 1). It
follows that tr0 divides R(t−1), or equivalently (t+1)r0 divides R(t). Suppose now that (t+k +1)rk divides
R(t) for some integer k with 0 ≤ k < N . Then, (t + k + 1)rk+1 divides A(t) as well as R(t), since rk+1 ≤ rk.
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Eq. (52) ensures that (t + k + 1)rk+1 divides (t − 1)m+1R(t − 1). We deduce that (t + k + 2)rk+1 divides R(t),
which concludes our induction step. Therefore, the polynomial

N∏
k=0

(t + k + 1)rk = A(t + 1)

divides R(t), hence (i). It follows that

(53) Br(t)K[t] ∩ ∆−1

(
tm+1K[t]

)
⊆ ∆−1

(
tm+1Br(t + 1)K[t]

)
.

Conversely, the hypothesis m + 1 ≥ r0 ≥ · · · ≥ rN ≥ 0 implies that Br(t) divides tm+1Br(t + 1). Thus Br(t)
also divides ∆−1

(
tm+1Br(t + 1)

)
. We easily deduce that (53) is an equality, hence (ii).

We now establish a generalization of Lemma 8.8 which will be needed in order to prove Theorem 8.3.

Lemma 8.9. We keep the notation of Theorem 8.3 and put

B(t) =
d∏

i=0
(t + αi)mi+1.

(i) Let Q(t), R(t) ∈ K[t] be two polynomials satisfying Q(t)A(t) = ∆−1
(
B(t)R(t)

)
. Then the polynomial

A(t + 1) divides R(t).

(ii) We have

A(t)K[t] ∩ ∆−1

(
B(t)K[t]

)
= ∆−1

(
B(t)A(t + 1)K[t]

)
.

Proof. For j = 1, . . . , d, write

Q(t)A(t) = Qj(t + αj)Bj(t + αj) and B(t)R(t) = (t + αj)mj+1Rj(t + αj),

with Qj(t), Rj(t) ∈ K[t]. By hypothesis, we have Qj(t)Bj(t) = ∆−1
(
tmj+1Rj(t)

)
. Lemma 8.8 (i) implies

that Bj(t + 1) divides Rj(t). Equivalently, Bj(t + αj + 1) divides

Rj(t + αj) = R(t)
d∏

i=1
i̸=j

(t + αi)mi+1.

Our hypothesis (48) on the αi ensures that Bj(t + αj + 1) and
d∏

i=1,i̸=j

(t + αi)mi+1 are coprime polynomials.

So Bj(t + αj + 1) divides R(t). Furthermore, (48) also implies that B1(t + α1 + 1), . . . , Bd(t + αd + 1) are
coprime. We conclude that the product B1(t + α1 + 1) · · · Bd(t + αd + 1) = A(t + 1) divides R(t). Hence (i).
We also deduce that

A(t)K[t] ∩ ∆−1

(
B(t)K[t]

)
⊆ ∆−1

(
B(t)A(t + 1)K[t]

)
.

Conversely, the hypothesis (47) implies that A(t) divides B(t)A(t+1). Thus A(t) also divides ∆−1
(
B(t)(t+

1)
)

and the above inclusion is an equality.

Proof of Theorem 8.3. Given a0, . . . , aM−1 ∈ K, we have

MC =


φ1,2

(
Q(t)A(t)

)
...

φd,md+1

(
Q(t)A(t)

)
 , where C =


a0
...

aM−1

 and Q(t) =
M−1∑
k=0

aktk.
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Suppose that C ∈ ker M. Then, writing B(t) =
∏d

i=1(t + αi)mi+1, we have

Q(t)A(t) ∈
⋂

(i,s)∈S

ker φαi,s = ∆−1

(
B(t)K[t]

)
,

the last equality coming from Lemma 8.7. Using Lemma 8.9 (ii), we deduce that there exists R(t) ∈ K[t]
such that

Q(t)A(t) = ∆−1
(
B(t)A(t + 1)R(t)

)
.

We find

M − 1 + deg A(t) ≥ deg Q(t) + deg A(t) = deg ∆−1

(
B(t)A(t + 1)R(t)

)
= deg B(t) + deg A(t) + deg R(t) − 1.

Since deg B(t) = M + 1, it follows that deg R(t) ≤ −1, hence R(t) = 0. As a consequence Q(t) = 0, or
equivalently, C = 0. Thus ker M = {0}.

8.3 Linear independence of the Padé approximants

We keep the notation of Section 7, with K = Q. Let ℓ, n be non-negative integers with 0 ≤ ℓ ≤ M . For each
(i, s) ∈ S, the polynomials Pn,ℓ(z), Qn,i,s,ℓ(z), and the Padé approximation

Rn,i,s,ℓ(z) = Pn,ℓ(z)Rαi,s(z) − Qn,i,s,ℓ(z)

of Rαi,s(z) are defined in Theorem 7.3. The main result of this subsection is Theorem 8.10 below, which
ensures the crucial non-vanishing property of certain determinants associated with the above Padé approxi-
mants. It uses the following notation. For ℓ = 0, . . . , M , define the column vectors

pn,ℓ(z) = t
(

Pn,ℓ(z), Qn,1,2,ℓ(z), . . . , Qn,1,m1+1,ℓ(z), . . . , Qn,d,1,ℓ(z), · · · , Qn,d,md+1,ℓ(z)
)

= t
(

Pn,ℓ(z), Qn,i,s,ℓ(z)
)

(i,s)∈S
,

and form the (M + 1) × (M + 1) matrix

Mn(z) =
(
pn,0(z), . . . , pn,M (z)

)
.

Theorem 8.10. We have det Mn(z) ∈ Q×. In particular, for any x ∈ Q, the Padé approximants pn,0(x), . . . , pn,M (x)
are linearly independent over K.

Theorem 8.10 is a direct consequence of Lemma 8.11 and Proposition 8.12 below. Our strategy is the
following. By definition Mn(z) is a polynomial. We show in Lemma 8.11, which is essentially an application
of [15, Lemma 4.2 (ii)], that this polynomial is a constant, and we reduce the problem to showing that another
determinant Θn is non-zero. This last property, established in Proposition 8.12, will be a consequence of
Theorem 8.3. In order to prove the above results, let us introduce more notation. Define

Dn(z) = det Mn(z) and Θn = det(φαi,s(An,ℓ(t)))0≤ℓ≤M−1
(i,s)∈S

∈ Q,

where

An,ℓ(t) = (−1)ℓ (t)ℓ

ℓ!

d∏
i=1

(
(−1)n (t + αi)n

n!

)mi+1
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is defined in Theorem 7.3. For ℓ = 0, . . . , M , denote by rn,ℓ(z) the column vector

rn,ℓ(z) = t
(

Pn,ℓ(z),Rn,1,2,ℓ(z), . . . ,Rn,1,m1+1,ℓ(z), . . . ,Rn,d,1,ℓ(z), · · · ,Rn,d,md+1,ℓ(z)
)

= t
(

Pn,ℓ(z),Rn,i,s,ℓ(z)
)

(i,s)∈S
,

and form the (M + 1) × (M + 1) matrix

Mn,R(z) =
(
rn,0(z), . . . , rn,M (z)

)
.

Then, by definition of the Padé approximations Ri,s,ℓ(z), we have

U(z)Mn(z) = Mn,R(z), where U(z) =



1 0 · · · 0 · · · · · · 0

Rn,1,2(z) −1 0
... · · · · · · 0

... · · ·
. . . ... · · · · · ·

...

Rn,1,m1+1(z) 0 · · · −1 · · · · · ·
...

... · · ·
...

... · · · · · ·
...

Rn,d,1(z) 0 0
... −1

... 0
... · · ·

...
... · · ·

. . . ...

Rn,d,md+1(z) 0 · · · 0 . . . · · · −1



.(54)

Lemma 8.11. There exists c ∈ Q× such that Dn(z) = c · Θn.

Proof. The entries of the first row of det Mn,R(z) are the polynomials Pn,0(z), Pn,1(z), . . . , Pn,M (z), which
have degrees nM, nM + 1, . . . , nM + M respectively. Thus

Pn,0(z), . . . , Pn,M−1(z) ∈ Q[z]≤(n+1)M−1 and Pn,M (z) ∈ c̃z(n+1)M + Q[z]≤(n+1)M−1,(55)

where c̃ ∈ Q× denotes the leading coefficient of the polynomial Pn,M (z). On the other hand, for each
(i, s) ∈ S and each ℓ with 0 ≤ ℓ ≤ M , Theorem 7.3 (iii) ensures that

Rn,i,s,ℓ ∈ n!φαi,s(An,ℓ(t))
zn+1 + 1

zn+2Q[[1/z]].(56)

For the sake of completion, we now recall the main arguments of [15, Lemma 4.2 (ii)]. Expanding det Mn,R(z)
along its first row and using (55) together with (56), we find

det Mn,R(z) ∈ (−1)M (n!)M c̃ det
(
φαi,s(An,ℓ(t))

)
0≤ℓ≤M−1

(i,s)∈S
+ 1

z
Q[[1/z]].

Finally, according to (54), det Mn,R(z) = (−1)M det Mn(z) ∈ Q[z]. Combined with the above, we conclude
that det Mn,R(z) = (−1)M (n!)M c̃ Θn.

Proposition 8.12. Let n = (n1,0, . . . , n1,m1 , . . . , nd,0, . . . , nd,md
) be a (M +1)-tuple of non-negative integers.

Then

Θn := det

φαi,s

(−1)ℓ (t)ℓ

ℓ!

d∏
k=1

mk∏
j=0

(−1)nk,j
(t + αk)nk,j

nk,j !


0≤ℓ≤M−1

(i,s)∈S

̸= 0.

In particular Θn = Θ(n,...,n) ̸= 0.

29



Proof. Fix non-negative integers m, n0, . . . , nm, and set N = max{n0, . . . , nm}. For k = 0, . . . , N , define
rk as the number of indices i ∈ {0, . . . , m} such that ni > k, and set r = (r0, . . . , rN ). Then m + 1 ≥ r0 ≥
· · · ≥ rN = 0 and

m∏
i=0

(t)ni
= Br(t) =

N∏
i=0

(t + i)ri ,

where Br(t) is as in Lemma 8.8. We conclude that the polynomial

d∏
k=1

mk∏
j=0

(t + αk)nk,j

has the same form as the polynomial A(t) in the statement of Theorem 8.3, hence

0 ̸= det
(

φαi,s

(
tℓA(t)

))
0≤ℓ≤M−1

(i,s)∈S
= ±Θn ·

(
M−1∏
ℓ=0

ℓ!
)

·

mk∏
j=0

nk,j !

M

.

We conclude that Θn ̸= 0.

Although we will not need it in the following, it seems that in the simpler case d = 1, we can express the
determinant Θn in a simple way.

Conjecture 8.13. Let m, n0, . . . , nm non-negative integers with m ≥ 1. The following identity holds

det

φs

 (t)ℓ

ℓ!

m∏
j=0

(t)nj

nj !


0≤ℓ≤m−1
2≤s≤m+1

= (−1)m(m+1)/2m!
∏m

i=0 ni!
(n0 + · · · + nm + m)! .

9 Estimates

We keep the notation of Section 7, with K = Q. So

S = {(i, s) ; 1 ≤ i ≤ d and 1 ≤ s ≤ mi + 1} \ {(1, 1)},

and for each α ∈ Q and any positive integer s, we have

φα,s = φRα,s ,

(see Definitions 5.1 and 8.1). Let ℓ, n be non-negative integers with 0 ≤ ℓ ≤ M . For each (i, s) ∈ S, the
polynomials Pn,ℓ(z), Qn,i,s,ℓ(z), and the Padé approximation

Rn,i,s,ℓ(z) = Pn,ℓ(z)Rαi,s(z) − Qn,i,s,ℓ(z)

of Rαi,s(z) are defined in Theorem 7.3. Recall that the polynomial Pn,ℓ(z) has degree nM + ℓ.

9.1 Absolute value of the Padé approximants

We keep the notation introduced at the beginning of Section 9. We describe the asymptotic behavior, as
n goes to infinity, of the polynomials Pn,ℓ(z) and Qn,i,s,ℓ(z) evaluated at a fixed rational number x. In
Section 10 we will explain how we can improve the rough estimate (58) below thanks to Perron’s second
theorem.
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Proposition 9.1. Let x ∈ Q. Then, for any (i, s) ∈ S and any integer ℓ with 0 ≤ ℓ ≤ M , we have

lim sup
n→∞

|Pn,ℓ(x)|1/n ≤ 1,(57)

lim sup
n→∞

|Qn,i,s,ℓ(x)|1/n ≤ ρ(M) :=
(

2(M + 1)M+1

MM

)M+1
.(58)

Proof. Fix (i, s) ∈ S and integer ℓ with 0 ≤ ℓ ≤ M . Let n be a positive integer. We first prove (57).
Theorem 7.3 (ii) together with the identity (y − k)n = (y − k)k(y)n−k valid for each k ≤ n yields

Pn,ℓ(z) = ±
n∑

k=0

(
n

k

)
(−1)n−k (z − k)ℓ

ℓ!

d∏
j=1

(
(z + αj − k)k(z + αj)n−k

n!

)mj+1

= ±
n∑

k=0

(
n

k

)
(−1)n−k (z − k)ℓ

ℓ!

d∏
j=1

(
(z + αj − k)k

k!
(z + αj)n−k

(n − k)!

(
n

k

)−1
)mj+1

.

Noticing that |(x + αj − k)k| ≤ (1 + |x + αj |)k and using Lemma 7.8, we find for k = 0, . . . , n the upper
bounds

max
{

|(x + αj − k)k|
k! ,

|(x + αj)n−k|
(n − k)!

}
≤ (en)|x+αj |.

We deduce the rough estimate

|Pn,ℓ(x)| ≤ (|x| + n)ℓ

ℓ! (en)β = eo(n), where β = 2
d∑

j=1
|x + αj |(mj + 1),

hence (57). We now prove (58). By Theorem 7.3 (ii), we have

Qi,s,ℓ(z) =
Mn+ℓ∑

j=1
pn,j,ℓ · bj,i,s(z),

where

bj,i,s(z) :=
j−1∑
k=0

(−1)k+1ai,s,k
(z + k + 1) · · · (z + j − 1)

(k + 1) · · · (j − 1)j

(the coefficients ai,s,k are as in Definition 7.1), and

pn,j,ℓ =
j+n∑
k=n

(
j + n

k

)
(−1)n−k

(
k

ℓ

) d∏
r=1

(
k − αr

n

)mr+1
(59)

as in Theorem 7.3 (ii). Evaluating at z = x and using Lemma 7.8, we find for j = 1, . . . , Mn + ℓ

|(x + k + 1) · · · (x + j − 1)|
(k + 1) · · · (j − 1) ≤ (|x| + k + 1) · · · (|x| + j − 1)|

(k + 1) · · · (j − 1) ≤ (|x|)j

j! ≤ e|x|j|x|.

Combining the above with Lemma 7.9, we get the estimate

max
1≤j≤Mn+ℓ

|bj,i,s(x)| ≤ e|x|+|αi|(Mn + ℓ)1+s+|x|+|αi| = eo(n)(60)

as n tends to infinity. We now estimate the coefficients pn,j,ℓ. For any integers k, j with 1 ≤ j ≤ Mn + ℓ

and n ≤ k ≤ j + n, we have(
j + n

k

)(
k

ℓ

)
≤ 2j+nkℓ ≤ 2(M+1)n+ℓ((M + 1)n + ℓ)ℓ = eo(n)2(M+1)n(61)
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as n tends to infinity. Put α = ⌈max1≤r≤d |αr|⌉. Then∣∣∣∣∣
d∏

r=1

(
k − αr

n

)mr+1
∣∣∣∣∣ ≤

d∏
r=1

(
k + α

n

)mr+1
=
(

k + α

n

)M+1
≤
(

(M + 1)n + ℓ + α

n

)M+1
.(62)

Finally, using Stirling’s formula, we obtain, as n tends to infinity,(
(M + 1)n + ℓ + α

n

)
= ((M + 1)n + ℓ + α)!

n!(Mn + ℓ + α)! = eo(n) ((M + 1)n + ℓ + α)(M+1)n+ℓ+α

nn(Mn + ℓ + α)Mn+ℓ+α

= eo(n) ((M + 1)n)(M+1)n

nn(Mn)Mn

= eo(n)
(

(M + 1)M+1

MM

)n

.

Combining the above with (59)-(62), we deduce that

|pn,j,ℓ| ≤ eo(n)
(

2(M + 1)M+1

MM

)(M+1)n

as n tends to infinity, uniformly on j ≤ Mn+ℓ. Together with (60), this yields |Qn,i,s,ℓ(x)| ≤ eo(n)ρ(M)n.

9.2 p-adic absolute value of the Padé approximations

Let n ≥ 0 be an integer. We keep the notation introduced at the beginning of Section 9. Recall that the
functions µ and den are defined in (8). This section is devoted to estimating the p-adic absolute values of
the Padé approximations Rn,i,s,ℓ(z) = Pn,ℓ(z)Rαi,s(z) − Qn,i,s,ℓ(z) evaluated at some rational point x.

Proposition 9.2. Let p be a prime number, (i, s) ∈ S and x ∈ Q. Assume that

|x|p · |µ(αi)|p > 1.

Then, for ℓ = 0, . . . , M , the series Rn,i,s,ℓ(x) converges to an element of Qp, and

lim sup
n→∞

∣∣Rn,i,s,ℓ(x)
∣∣1/n

p
≤ p−1/(p−1)

∣∣∣xµ(αi)M+1
d∏

k=2
µ(αk)mk+1

∣∣∣−1

p
.

Remark 9.3. Since µ(αi) divides µ(α) for each i, we have |µ(αi)|p ≥ |µ(α)|p. So, the statement of Theo-
rem 9.2 still holds if we replace µ(αi) with µ(α).

The proof of Proposition 9.2 uses the following notation. Given a vector α = (α1, . . . , αm) ∈ Qm and
N ∈ N, we put

µN (α) = den(α)N
∏

q:prime
q|den(α)

q⌊N/(q−1)⌋,(63)

(recall that µ(α) and den(α) are defined in (8)). It follows easily from the definition that

|µn(α)|p ≥ |µ(α)|np .(64)

Note that for any integer ℓ and any rational number α, we have den(α + ℓ) = den(α). Consequently, we also
have µn(α + ℓ) = µn(α). We will frequently use the following classical lemma, which is a direct consequence
of [7, Lemma 2.2], to control the denominator of (α)n/n!.
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Lemma 9.4. Let n be a non-negative integer and α ∈ Q. Then, for k = 0, . . . , n, we have

µn(α) (α)k

k! ∈ Z and µn(α)
(

α

k

)
∈ Z.

Lemma 9.5. Let p be a prime number and P (t) =
∑n

k=0 pk · (t)k/k! ∈ Q[t] be a rational polynomial of degree
n ≥ 0. Suppose that p0, . . . , pn ∈ Z. Then, for any (i, s) ∈ S, we have

|φαi,s(P (t))|p ≤ (n + 1)s−1 |µn+1(αi)|−1
p .

Proof. Fix (i, s) ∈ S and write gi,s(z) :=
∑∞

k=0 ai,s,kzk as in Definition 7.1. According to Lemma 7.2, we
have

|φαi,s(P (t))|p =
∣∣∣ n∑

k=0
pk(−1)k+1ai,s,k

∣∣∣
p

≤ max
0≤k≤n

|ai,s,k|p.(65)

We now estimate the p-adic norm of the coefficients ai,s,k thanks to the explicit formulas (32).

Case 1. Suppose i = 1. Then s ≥ 2 and α1 = 0, and using (32) we obtain a1,s,0 = · · · = a1,s,s−2 = 0 and
the crude estimate

|a1,s,k|p ≤ (k + 1)s−1 (k ≥ s − 1).(66)

Note that we could easily get the better upper bound ((k +1)/(s−1))s−1 when s ≥ 2 by using the inequality
of arithmetic and geometric means, however it would not make a difference for our applications.

Case 2. Suppose i ≥ 2. If s = 1, then using Lemma 9.4 together with (32), we obtain

|ai,1,k|p =
∣∣∣( αi

k + 1

)∣∣∣
p

≤ |µk+1(αi)|−1
p .(67)

If s ≥ 2, we combine again (32) with Lemma 9.4 and the estimates (66) to get

|ai,s,k|p =
∣∣∣ k∑

j=0

(
αi

j

)
a1,s,k−j

∣∣∣
p

≤ |µk(αi)|−1
p (k + 1)s−1.(68)

Finally, Eqs. (66)-(68) together with (65) yields |φαi,s(P (t))|p ≤ (n + 1)s−1|µn+1(αi)|−1
p .

Proof of Proposition 9.2. Fix an integer ℓ with 0 ≤ ℓ ≤ M . Recall that by Theorem 7.3 (iii), we have

Rn,i,s,ℓ(z) =
∞∑

k=n

k!
(k − n)!

φαi,s ((t + n)k−nAn,ℓ(t))
z(z + 1) · · · (z + k) .

Let k be an integer with k ≥ n. Then∣∣∣∣ k!
(k − n)!

1
x(x + 1) · · · (x + k)

∣∣∣∣
p

≤ |n!|p|x|−k−1
p .(69)

It remains to estimate the p-adic norm of the coefficient φαi,s ((t + n)k−nAn,ℓ(t)) ∈ Q. Note that the
polynomial P (t) = (t + n)k−nAn,ℓ(t) has degree nM + k + ℓ. Lemma 7.6 implies that

P (t) =
nM+k+ℓ∑

j=0
(−1)jpj

j∑
h=0

(
j

h

)
(−1)j−h(n − h)k−nAn,ℓ(−h) (z)j

j! .

On the other hand, according to Lemma 9.4, we have for each integer h ≥ 0( d∏
r=2

µn(αr)mr+1
)

An,ℓ(−h) =
( d∏

r=2
µn(αr)mr+1

)(h

ℓ

) d∏
r=1

(
h − αr

n

)mr+1
∈ Z,
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so that the polynomial P (t)
∏d

j=2 µn(αj)mi+1 satisfy the hypothesis of Lemma 9.5. Using (64), we conclude
that

|φαi,s(P (t))|p ≤ (nM + k + ℓ + 1)s−1|µ(αi)|−(nM+k+ℓ+1)
p

∣∣∣ d∏
j=2

µ(αj)mi+1
∣∣∣−n

p
.

Together with (69), it follows that the series Rn,i,s,ℓ(x) converges in Qp as soon as |xµ(αi)|p ≥ p. In that
case, writing Q(k) = (k(M + 1) + ℓ + 1)s−1, we find

∣∣Rn,i,s,ℓ(x)
∣∣
p

≤ |n!|p
∣∣∣ d∏

j=2
µ(αj)mi+1

∣∣∣−n

p

∑
k≥n

|x|−k−1
p Q(k)|µ(αi)|−(nM+k+ℓ+1)

p

= o(en)|n!|p
∣∣∣ d∏

j=2
µ(αj)mi+1

∣∣∣−n

p
|x|−n

p |µ(αi)|−n(M+1)
p

as n tends to infinity, where the implicit constant does not depend on n. To conclude, we raise both side of
the above inequality to the power 1/n and use the well-known estimate

lim
n→∞

|n!|1/n
p ≤ p−1/(p−1).

9.3 Denominators of the Padé approximants

Let n ≥ 0 be an integer. We keep the notation introduced at the beginning of Section 9. We now estimate
the denominators of Pn,ℓ(x) and Qn,i,s,ℓ(x) for x ∈ Q×. Given a positive integer N , we denote by dN the
least common multiple of 1, . . . , N . Recall that the function µ (resp. µN ) is defined in (8) (resp. (63)). We
will prove the following result.

Proposition 9.6. Let x ∈ Q \ {0}. Put m = max1≤i≤d{mi} and define

Dn(α, x) = µMn+M (x)
( d∏

i=2
µn(αi)mi+1

)
· µMn+M (α) · dMn+M

( m∏
k=1

d⌊(Mn+M)/k⌋

)
.

Then, for any integer ℓ with 0 ≤ ℓ ≤ M and any (i, s) ∈ S, we have

Dn(α, x)Pn,ℓ(x) ∈ Z and Dn(α, x)Qn,i,s,ℓ(x) ∈ Z.

Furthermore,

lim sup
n→∞

|Dn(α, x)|1/n = eρ∞ and lim sup
n→∞

|Dn(α, x)|1/n
p = e−ρp ,

where

ρ∞ = M
(

1 +
m∑

j=1

1
j

)
+ log(η),

ρp = − log |η|p,

η = µ(x)M µ(α)M
d∏

j=2
µ(αj)mj+1.

The following lemma is a particular case of Shidlovsky’s trick for estimating the denominators of coeffi-
cients of power of formal Laurent series (confer [20, lemma 7] and [1, p.17]). Recall that (ai,s,k)k≥0 are the
coefficients of the series gi,s introduced in Definition 7.1.
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Lemma 9.7. Let (i, s) ∈ S and N be an integer with N ≥ (s − 1)n. Then, for k = 0, . . . , N , we have

a1,s,k

s−1∏
j=1

d⌊N/j⌋ ∈ Z, if i = 1 and s ≥ 2,

ai,s,k · µN (αi)
s−1∏
j=1

d⌊N/j⌋ ∈ Z, if i ≥ 2 and s ≥ 2,

ai,1,k · µN+1(αi) ∈ Z, if i ≥ 2 and s = 1.

Proof. Put DN = dN d⌊N/2⌋ · · · d⌊N/(s−1)⌋. Suppose that i = 1 and s ≥ 2. In view of (32), it suffices to
show that

DN

(ℓ1 + 1) · · · (ℓs−1 + 1) ∈ Z(70)

for any ℓ1, . . . , ℓs−1 with ℓ1 + · · · + ℓs−1 ≤ N − s + 1 and ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓs−1 ≥ 0. For such a choice of
integers and for j = 1, . . . , s − 1, we have

j(ℓj + 1) ≤ ℓ1 + · · · + ℓs−1 + s − 1 ≤ N,

hence ℓj + 1 ≤ ⌊N/j⌋. Thus, ℓj + 1 is a factor of d⌊N/j⌋. This implies (70).

If i = 1 and s ≥ 2, then we get the result by using the case i = 1 together with (32) and Lemma 9.4.
Similarly, we obtain the case i ≥ 2 and s = 1 by combining, again, (32) and Lemma 9.4.

Proof of Proposition 9.6. Write Pn,ℓ(z) =
∑Mn+ℓ

j=0 pj,ℓ ·(z)j/j!, where pj,ℓ are defined in Theorem 7.3 (ii).
Then, Lemma 9.4 yields

d∏
i=2

µn(αi)mi+1pj,ℓ ∈ Z and µMn+ℓ(x)
d∏

i=2
µn(αi)mi+1Pn,ℓ(x) ∈ Z,(71)

thus Dn(α, x)Pn,ℓ(x) ∈ Z. We now prove the second statement. Fix (i, s) ∈ S. Again, using Theorem 7.3 (ii),
we have

Qn,i,s,ℓ(z) =
Mn+ℓ∑

j=1
pj,ℓ

(
j−1∑
k=0

(−1)k+1ai,s,kk!(z)j

j!(z)k+1

)
(72)

where ai,s,k ∈ Q are from Definition 7.1. By Lemma 9.7, for any integer k with 0 ≤ k < Mn + M , we have

µMn+M (αi)
m∏

j=1
d⌊(Mn+M)/j⌋ai,s,k ∈ Z.(73)

Let k, j be two integers with 0 ≤ k < j. Notice

k!(z)j

j!(z)k+1
= k!

j(j − 1) · · · (j − k)
(z + k + 1)j−k−1

(j − k − 1)! =
k∑

i=0
(−1)k−i

(
k

i

)
1

j − i

(z + k + 1)j−k−1

(j − k − 1)! ,

(the last inequality arises from the partial fraction decomposition of 1/(x(x − 1) · · · (x − k)) evaluated at
x = j). Lemma 9.4 implies that

dMn+M · µMn+M (x)
k∑

i=0
(−1)k−i

(
k

i

)
1

j − i

(x + k + 1)j−k−1

(j − k − 1)! ∈ Z.(74)
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We deduce from (71), (73), (74) combined with (72) that

( d∏
i=2

µn(αi)mi+1
)

µMn+M (αi)
( m∏

j=1
d⌊(Mn+M)/j⌋

)
dMn+M · µMn+M (x)Qn,i,s,ℓ(x) ∈ Z,

hence Dn(α, x)Qn,i,s,ℓ(x) ∈ Z.

Asymptotic estimate of Dn(α, x). First, note that

lim
N→∞

µN (α)1/N = µ(α) and lim
N→∞

|µN (α)|1/N
p = |µ(α)|p.

The same goes by replacing α with x. On the other hand, the prime number theorem (confer [41]) implies
that dn = en(1+o(1)), and |dn|p ≤ 1 for each n since dn is an integer. We deduce from the definition of Dn

and the above that

lim
n→∞

|Dn(α, x)|1/n = µ(x)M

( d∏
i=2

µ(αi)mi+1
)

· µ(α)M · eM

( m∏
k=1

eM/k

)
= eρ∞ ,

lim
n→∞

|Dn(α, x)|1/n
p = |µ(x)|Mp

( d∏
i=2

|µ(αi)|mi+1
p

)
· |µ(α)|Mp = e−ρp .

10 Poincaré-Perron type recurrence

We keep the notation of Section 7. Recall that d, m1, . . . , md are positive integers, and

M = d − 1 + m1 + · · · + md.

The goal of the section is to explain how we can improve the asymptotic estimates (58) of Proposition 9.1
for
(
|Qn,i,s,ℓ(x)|1/n

)
n≥0. As an application, we obtain the following improvement for M ≤ 2.

Proposition 10.1. Let x ∈ Q. Suppose that M ≤ 2. Then, for any (i, s) ∈ S and any integer ℓ with
0 ≤ ℓ ≤ M , we have

lim sup
n→∞

|Pn,ℓ(x)|1/n ≤ 1,

lim sup
n→∞

|Qn,i,s,ℓ(x)|1/n ≤ 1.

Proposition 10.1 will be proven in Subsection 10.3. The idea behind the proof is to show that, for a
fixed ℓ, the sequences (Pn,ℓ(x))n≥0 and (Qn,i,s,ℓ(x))n≥0 satisfy a Poincaré-type recurrence of some order
J > 0

aJ(n)u(n + j) + aJ−1(n)u(n + j − 1) + · · · + a0(n)u(n) = 0(75)

for large enough n, where the coefficients aj(t) ∈ Q[t] are polynomials and aJ(t) ̸= 0. Then, we can apply
Perron’s Second Theorem below (see [34] and [37, Theorem C]) to estimate precisely the growth of a solution
of the above recurrence. Computations for small values of M suggest that we can take J = M +1. Although
the above approach works, each different integer ℓ with 0 ≤ ℓ ≤ M would lead to a different recurrence. In
order to alleviate the computations, we will first reduce the problem to the study of some auxiliary sequences
introduced in Subsection 10.1.
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Theorem 10.2 (Perron’s Second Theorem). Let J be a positive integer. Assume that for j = 0, . . . , J there
exist a function aj : Z≥0 → C and bj ∈ C such that

lim
n→∞

aj(n) = bj ∈ C,

with bJ ̸= 0. Denote by λ1, . . . , λJ the (not necessarily distinct) roots of the characteristic polynomial

χ(z) = bJzJ + bJ−1zJ−1 + · · · + b0.

Then, there exist J linearly independent solutions u1, . . . , uJ of (75), such that, for each j = 1, . . . , J ,

lim sup
n→∞

|uj(n)|1/n = |λj |.

In particular, any solution u of (75) satisfies lim supn→∞ |u(n)|1/n ≤ max1≤j≤J |λj |.

Remark 10.3. In the above theorem, there are no restriction on the roots of χ(z), whereas in Poincaré’s
Theorem and Perron’s First Theorem, we ask that

|λi| ≠ |λj | for i ̸= j,(76)

see [37, Theorem A and B]. This is important to note as it seems that the characteristic polynomials we are
dealing with never satisfy condition (76), see Figure 2.

10.1 Auxiliary sequences

Recall that ∆−1(P (z)) = P (z − 1) − P (z) for each P (z) ∈ Q[z]. Similarly, ∆−1(P (t)) = P (t − 1) − P (t).
The K[z]-morphisms φαi,s are defined in (31). For each integer n ≥ M and each (i, s) ∈ S, put

Ân(z) = (−1)n−M
d∏

r=1

(
(z + αr)n

n!

)mr+1
,

P̂n(z) = ∆n−M
−1 (An(z)) ,

Q̂n,i,s(z) = φαi,s

(
P̂n(z) − P̂n(t)

z − t

)
.

The goal of this section is to prove the following result.

Proposition 10.4. Let x ∈ Q. For each (i, s) ∈ S and each integer ℓ with 0 ≤ ℓ ≤ M , we have

lim sup
n→∞

|Pn,ℓ(x)|1/n ≤ max
0≤j≤M

lim sup
n→∞

|P̂n(x − j)|1/n,

lim sup
n→∞

|Qn,i,s,ℓ(x)|1/n ≤ max
0≤j≤M

lim sup
n→∞

|Q̂n,i,s(x − j)|1/n.

We first establish some useful intermediate lemmas. The following is similar to Lemma 7.5.

Lemma 10.5. Let j, n be non-negative integers with j ≤ M < n. Then

tkP̂n(t − j) ∈
⋂

(i,s)∈S

ker φαi,s (0 ≤ k < n − M).(77)

Proof. Write Ân(t − j) = Ân−M (t)Qj(t) with Qj(t) ∈ Q[t], and fix an integer k with 0 ≤ k < n − M . By
Lemma 6.3 (iii), we have

tkP̂n(t − j) = tk∆n−M
−1

(
Ân−M (t)Qj(t)

)
∈ ∆−1

(
Q[t]

d∏
r=1

(t + αr)mr+1
)

=
⋂

(i,s)∈S

ker φαi,s,

the last equality coming from Lemma 8.7. Hence (77).
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Lemma 10.6. Let P (z), a(z) ∈ Q[z] with deg a(z) = d ≥ 0, and set P̃ (z) = a(z)P (z). Given (i, s) ∈ S, we
suppose that

tkP (t) ∈ ker φαi,s (k = 0, . . . , d − 1).

Put

Q(z) = φαi,s

(
P (z) − P (t)

z − t

)
and Q̃(z) = φαi,s

(
P̃ (z) − P̃ (t)

z − t

)
.

Then, we have Q̃(z) = a(z)Q(z).

Proof. We follow the arguments in the proof of [25, Lemma 3.8]. First, note that the polynomial

b(t) = a(z) − a(t)
z − t

∈ Q[z, t]

has degree at most d − 1 in t. By hypothesis, the polynomial b(t)P (t) belongs to the kernel of φαi,s. To
conclude, it suffices to write

P̃ (z) − P̃ (t)
z − t

= a(z)P (z) − P (t)
z − t

+ b(t)P (t),

and then to apply Q[z]-linear morphism φαi,s to the above identity.

Proposition 10.7. Let n, ℓ be integers with 0 ≤ ℓ ≤ M and 2M ≤ n. For each (i, s) ∈ S, we have

Pn,ℓ(z) =
M∑

j=0
aj(n, z)P̂n(z − j) and Qn,i,s,ℓ(z) =

M∑
j=0

aj(n, z)Q̂n,i,s(z − j),

where

aj(n, z) =
M−j∑
k=0

(
n

k

)(
M − k

j

)
(−1)j+k+ℓ+Mn+M+n

ℓ! ∆k
−1
(
(z − n + k)ℓ

)
.

Proof. According to Lemma 6.1, and since ∆k
−1((z)ℓ) = 0 if k > ℓ, we have

(−1)ℓ+Mn+M+nℓ!Pn,ℓ(z) = ∆n
−1
(
(z)ℓÂn(z)

)
=

n∑
k=0

(
n

k

)
∆k

−1
(
(z − n + k)ℓ

)
∆n−k

−1
(
Ân(z)

)
=

M∑
k=0

(
n

k

)
∆k

−1
(
(z − n + k)ℓ

)
∆M−k

−1
(
P̂n(z)

)
.

Using the identity ∆m
−1 =

∑m
j=0

(
m
j

)
(−1)m−jτ j

−1, we find

∆M−k
−1 (P̂n(z)) =

M−k∑
j=0

(
M − k

j

)
(−1)M−k−jP̂n(z − j),

and rearranging the terms in the previous expression, we obtain the expected formula for Pn,ℓ(z). It follows
that

Qn,i,s,ℓ(z) = φαi,s

(
Pn,ℓ(z) − Pn,ℓ(t)

z − t

)
=

M∑
j=0

φαi,s

(
aj(n, z)P̂n(z − j) − aj(n, t)P̂n(t − j)

z − t

)
.
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Note that for each j, the polynomial aj(n, z) ∈ Q[z] has degree at most M (in the variable z), and that
according to Lemma 10.5, we have tkP̂n(t−j) ∈ ker φαi,s for k = 0, . . . , M −1. By Lemma 10.6, we conclude
that

φαi,s

(
aj(n, z)P̂n(z − j) − aj(n, t)P̂n(t − j)

z − t

)
= aj(n, z)φαi,s

(
P̂n(z − j) − P̂n(t − j)

z − t

)
= aj(n, z)Q̂n,i,s(z − j).

Proof of Proposition 10.4. This is a consequence of Proposition 10.7, noticing that for a fixed x ∈ Q,
the polynomials aj(n, x) (in the variable n) satisfy

max
0≤j≤M

lim sup
n→∞

|aj(n, x)|1/n = 1.

10.2 Poincaré-Perron recurrence

In view of Proposition 10.4, it remains to estimate the auxiliary sequences introduced in the previous section.
This will be done by using Perron’s Second Theorem (see Theorem 10.2). First, we reduce the problem by
proving that it suffices to find a Poincaré-type recurrence for the sequence

(
P̂n(z)

)
n≥M

. The next result
ensures that for each (i, s) ∈ S, the sequence

(
Q̂n,i,s(z)

)
n≥M

will also satisfy the same recurrence.

Proposition 10.8. Suppose that there exist integers J, d0, . . . , dJ ≥ 0 and sequences
(
aj(n, z)

)
≥n

in Q[z]
for j = 0, . . . , J with the following properties. For each integer n ≥ M , we have aj(n, z) ∈ Q[z] and

deg aj(n, z) ≤ dj (0 ≤ j ≤ J).

Assume that
(
P̂n(z)

)
n≥M

satisfies the recurrence

J∑
j=0

aj(n, z)P̂n+j(z) = 0(78)

for each n ≥ M . Then, for any (i, s) ∈ S, the sequence
(
Q̂n,i,s(z)

)
n≥M

also satisfies the recurrence (78) for
each integer n ≥ M + max{0, N}, where N = max0≤j≤J{dj − j}.

Proof. By hypothesis, we have

0 =
J∑

j=0

P̃j,n(z) − P̃j,n(t)
z − t

, where P̃j,n(z) = aj(n, z)P̂n+j(z).

Fix (i, s) ∈ S. Using Lemmas 10.5 and 10.6 we find

0 = φαi,s

( J∑
j=0

P̃j,n(z) − P̃j,n(t)
z − t

)
=

J∑
j=0

φαi,s

(
P̃j,n(z) − P̃j,n(t)

z − t

)
=

J∑
j=0

aj(n, z)Q̂n+j,i,s(z),

for each n ≥ M such that n + j − M ≥ dj for j = 0, . . . , J , i.e. such that n ≥ M + N .

For small values of M , we can use Zeilberger’s algorithm (see [36, Chapter 6]) to obtain non trivial
recurrences of the form (78), see Section 10.3. Let us briefly explain how we could prove that such recurrences
exist for any value of the parameter M . We will just give a sketch of the proof since we do not use this result
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in this paper (and since it would be a bit long to give all the details). Recall that for any integer n ≥ M , we
have

P̂n(z) = ∆n−M
−1 (An(z)) =

∑
k∈Z

F (z, n, k),

where F (z, n, k) is the doubly hypergeometric term (with respect to n and k)

F (z, n, k) =
(

n − M

k

)
(−1)k

d∏
r=1

(
z + αr − k − 1

n

)mr+1
,

with the convention that
(

n−M
k

)
= 0 if either k < 0 or k > n − M . First, we could prove that there

exist integers I, J ≥ 0 and coefficients ai,j(z) independent of k, not all zero, which are polynomials in the
parameters z, n, α1, . . . , αd, such that

I∑
i=0

J∑
j=i

ai,j(z)F (z, n − j, k − i) = 0 (for 0 ≤ k ≤ n − M and n ≥ M + J).(79)

Essentially, this corresponds to [36, Theorem 4.4.1] and it seems that it suffices to follow Sister Celine’s
method. More explicitly, the steps of the algorithm are the following.

• Divide each term of (79) by F (z, n, k) ̸= 0 and write F (z, n − j, k − i)/F (z, n, k) as the ratio of some
polynomial functions in the parameters z, n, k, α1, . . . , αd.

• Multiply (79) by the least common multiple of the denominators of the above rational functions and
write this expression as a polynomial in k. We can show that the degree of this polynomial is at most
linear in I en J (more precisely it seems it is at most (M + 1)(I + J)).

• Solve (in Z[z, n, α1, . . . , αd]) the system of linear equations in the unknown coefficients ai,j obtained
by equating to zero the coefficients of each power of k. If J ≥ I we have at least I(I + 1)/2 unknowns.

If I and J are large enough with J = I, then there are certainly more unknowns ai,j than equations, hence
a non trivial solution satisfying (79). Here, our setting is slightly different from the setting in [36, Section 4
and 6] because we are dealing with the extra parameters z, α1, . . . , αd, and we impose ai,j(z) = 0 when
i > j. Now, notice that

∑n−M
k=0 F (z, n − j, k − i) = P̂n−j(z) for any indices with 0 ≤ i ≤ j ≤ J . So, writing

bj(z) =
∑I

i=0 ai,j(z), and taking the sum from k = 0 to k = n − M in (79), we find
J∑

j=0
bj(z)P̂n−j(z) = 0,

which is a recurrence of the form (78) (written differently). To conclude, we also must carefully justify that
the coefficients bj(z) are not all equal to 0. Here, it seems that once again we can adapt the arguments used
in the proof of [36, Theorem 6.2.1]. The idea is to consider a non trivial relation (79) with I minimal, and
then to prove that if the polynomial

∑J
j=0 bj(z)Y j is equal to 0, then we can find another relation of the

form (79) with I replaced by I − 1, which would contradict the minimality of I.

Numerical computations for small values of M indicate that the order J of the recurrence (78) is M + 1.

10.3 Small values of M

Fix x ∈ Q and recall that α1 = 0. If M ≤ 2, then d = 1 and m1 = M . In this section we give the
explicit Poincaré-Perron recurrence satisfied by (P̂n(z))n≥M for the above values of M . This will al-
low us to prove Proposition 10.1. The MAPLE’s programs used for our computations are available at
https://apoels-math-u.net/Maple/polygamma_pade.zip.
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Case d = 1 and m1 = 1. Then

P̂n(z) =
n−1∑
k=0

F (z, n, k), where F (z, n, k) = (−1)k

(
n − 1

k

)(
z + n − k − 1

n

)2
.

Zeilberger’s algorithm ensures that (P̂n,0(z))n≥1 satisfies the recurrence

(n2 + 5n + 6)u(n + 2) − ((8 + 4z)n + 6z + 12)u(n + 1) − (n2 + n)u(n) = 0.(80)

Its characteristic polynomial is
χ(T ) = T 2 − 1

(independent of z), whose roots have modulus 1. By Proposition 10.8, the sequence (Q̂n,1,2(z))n≥1 also
satisfies (80). Together with Theorem 10.2, this yields, for each (i, s) ∈ S

max
0≤j≤1

lim sup
n→∞

|P̂n(x − j)|1/n ≤ 1 and max
0≤j≤1

lim sup
n→∞

|Q̂n,1,2(x − j)|1/n ≤ 1.(81)

Case d = 1 and m1 = 2. We have

P̂n(z) =
n−1∑
k=0

F (z, n, k), where F (z, n, k) = (−1)k

(
n − 1

k

)(
z + n − k − 1

n

)3
.

Zeilberger’s algorithm ensures that (P̂n,0(z))n≥1 satisfies the recurrence

a3(n, z)u(n + 3) + a2(n, z)u(n + 2) + a1(n, z)u(n + 1) + a0(n, z)u(n) = 0,(82)

where

a3(n, z) = 2(3n + 5)(n + 4)(2n + 7)(n + 3)2

a2(n, z) = −(3n + 7)
(
9n4 + 74n3 + 3(9x2 + 45x + 127)n2 + (585x + 117x2 + 976)n + 120(x2 + 7 + 5x)

)
,

a1(n, z) = 2n(n + 1)(9n3 + 48n2 + 80n + 43)
a0(n, z) = −n(3n + 8)(n − 1)(n + 1)2.

Its characteristic polynomial is

χ(T ) = 4T 3 − 9T 2 + 6T − 1 = (T − 1)2(4T − 1),

(independent of z), whose largest roots have modulus 1. By Proposition 10.8, the sequence (Q̂n,1,s(z))n≥1

also satisfies (82) for s = 2, 3. Together with Theorem 10.2, this yields, for each (i, s) ∈ S

max
0≤j≤2

lim sup
n→∞

|P̂n(x − j)|1/n ≤ 1 and max
0≤j≤2

lim sup
n→∞

|Q̂n,i,s(x − j)|1/n ≤ 1.(83)

Proof of Proposition 10.1. Suppose that M ≤ 2 and fix x ∈ Q. Then (81) and (83) combined with
Proposition 10.4 yields the expected result.

Case M ≥ 3. It is possible to apply the above method when the parameters M is larger than 2. However, the
computing time increases significantly at each step. Maple’s computations suggest that the first characteristic
polynomials are the following (we did the computation for d = 1):
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M characteristic polynomial χ(T )
1 (T − 1)(T + 1)
2 (T − 1)2(4T − 1)
3 (T − 1)(T + 1)(27T 2 + 1)
4 (T − 1)2(−1 + 16T )(4T + 1)2

5 (T − 1)(T + 1)(3125T 4 + 625T 2 + 1)
6 (T − 1)4(−1 + 64T )(27T + 1)2

7 (T − 1)(T + 1)(823543T 6 + 6000099T 4 + 12005T 2 + 1)

Figure 2: Expected characteristic polynomials for small values of M

It is seems that for M = 7, the characteristic polynomial has two root of modulus 2.698 · · · > 1.

Remark 10.9. It would be desirable to determine the characteristic polynomial χM (T ) as well as the modulus
ρM of its largest roots for arbitrary M , since this would allow us to relax condition (86) of Theorem 11.1
below (which is a strong version of our main theorem) by replacing g(M) defined in (84) with log ρM .

11 Proof of our main theorem

In order to state a general version of our main Theorem 1.5, we need to introduce some notation. Let
d, m1, . . . , md be positive integers and α = (α1, · · · , αd) ∈ Qd with α1 = 0 and αi − αj /∈ Z for any i ̸= j.
Put m = max1≤i≤d mi, M =

∑d
i=1 mi + d − 1, m = (m1, . . . , md), and

S = {(i, s) ; 1 ≤ i ≤ d and 1 ≤ s ≤ mi + 1} \ {(1, 1)}.

Recall that qp = p if p ≥ 3 and qp = 4 if p = 2. The function µ is defined in (8). Set

f(α, m) = g(M) + M

(
1 +

m∑
j=1

1
j

)
+ log

(
µ(α)M

d∏
i=2

µ(αi)mi+1
)

− log |µ(α)|p,

where the function g is defined by g(M) = 0 if M = 1, 2 and

g(M) = (M + 1) log
(

2(M + 1)M+1

MM

)
if M > 2.(84)

Note that (M + 1)M /MM tends to e as M tends to infinity, so that

g(M) = M log(M + 1) + O(M),

with an absolute implied constant.

Theorem 11.1. Let p be a prime number and x ∈ Q satisfying

|x|p ≥ qp max{1, |α2|p, . . . , |αd|p}(85)

and
log p

p − 1 + log |x|p > M log
(
µ(x)|µ(x)|p

)
+ f(α, m).(86)

Then the m1 + · · · + md + 1 elements of Qp

1, G(2)
p (x + α1), . . . , G(m1+1)

p (x + α1), . . . , G(2)
p (x + αd), . . . , G(md+1)

p (x + αd)

are linearly independent of Q.
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Theorem 11.1 combined with (4) yields the following consequence, which is a refined version of Theo-
rem 1.6.

Theorem 11.2. Let p and x satisfying the hypotheses of Theorem 11.1. Then 1 together with the m1+· · ·+md

elements of Qp

ω(x + αi)1−siζp(si, x + αi) (1 ≤ i ≤ d and 2 ≤ si ≤ mi + 1)

are linearly independent over Q, where ω denotes the Teichmüller character on Q×
p .

The special case d = m = 1 was proved by Beukers, see [7, Theorem 9.2].

Remark 11.3.

• Condition (86) is not optimal and could be relaxed by replacing g defined in (84) with a smaller function
of M , see Remark 10.9.

• If the denominator of x is a power of p, then we have µ(x)|µ(x)|p = 1, and Condition (86) becomes

log p

p − 1 + log |x|p > f(α, m).(87)

• In the case d = 1 and m1 = m ∈ Z≥1, we have M = m and den(α) = µ(α) = 1. Thus

f(α, m) = g(m) + m

(
1 +

m∑
j=1

1
j

)
= 2m log(m + 1) + O(m).(88)

We will deduce Theorem 11.1 from the next theorem. For any non-negative integers ℓ, n with 0 ≤
ℓ ≤ M and each (i, s) ∈ S, the polynomials Pn,ℓ(z), Qn,i,s,ℓ(z), and the Padé approximation Rn,i,s,ℓ(z) =
Pn,ℓ(z)Rαi,s(z) − Qn,i,s,ℓ(z) of Rαi,s(z) are defined in Theorem 7.3. Recall that Rα,s is as in Definition 5.1.

Theorem 11.4. Let p be a prime number and x ∈ Q satisfying

|x|p ≥ qp max
1≤i≤d

{1, |αi|p}.(89)

Let β, ρ∞, ρp, δ be real numbers and (Dn)n≥0 be a sequence of positive integers such that, for each (i, s) ∈ S
and each ℓ = 0, . . . , M , the numbers DnPn,ℓ(x) and DnQn,i,s,ℓ(x) are integers (for each integer n ≥ 0) and

lim sup
n→∞

max
{

|Pn,ℓ(x)|, |Qn,i,s,ℓ(x)|
}1/n ≤ eβ ,

lim sup
n→∞

D1/n
n ≤ eρ∞ ,

lim sup
n→∞

|Dn|1/n
p ≤ e−ρp ,

lim sup
n→∞

|Rn,i,s,ℓ(x)|1/n
p ≤ e−δ.

Suppose that β + ρ∞ < δ + ρp. Then the M + 1 elements (1, Rαi,s(x))(i,s)∈S of Qp are linearly independent
over Q.

Proof. The proof is classical, see for example [14, Proposition 5.7] (in the case K = Q, v0 = p), which
also provides an effective irrationality measure result. For the sake of completion we recall the arguments.
First, note that the condition (89) ensures that |x + αi|p = |x|p ≥ qp > 1 for i = 1, . . . , d, so that Rαi,s(x)
converges p-adically for each (i, s) ∈ S by Lemma 5.2. If p does not divide the denominator den(αi) of αi,
we have |x|p| · |µ(αi)|p = |x|p > 1. If p divides den(αi), then

|µ(αi)|p = |den(αi)|pp−1/(p−1) = |αi|−1
p p−1/(p−1).
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and (89) implies that |x|p · |µ(αi)|p ≥ qpp−1/(p−1) > 1. Consequently, the series Rn,i,s,ℓ(x) converges p-
adically, see Proposition 9.2. By contradiction, suppose that (1, Rαi,s(x))(i,s)∈S are linearly dependent over
Q. Then, there exists (b, bi,s)(i,s)∈S ∈ ZM+1 \ {0} such that

b +
∑

(i,s)∈S

bi,sRαi,s(x) = 0.(90)

Given a positive integer n, define

p̂n,ℓ := DnPn,ℓ(x) and q̂n,i,s,ℓ := DnQn,i,s,ℓ(x),

for each (i, s) ∈ S and each ℓ = 0, . . . , M . By hypothesis p̂n,ℓ and q̂n,i,s,ℓ are integers. Theorem 8.10 implies
that the (M + 1) × (M + 1) matrix (

p̂n,ℓ

q̂n,i,s,ℓ

)
0≤ℓ≤M
(i,s)∈S

is non-singular. Consequently, there exists an integer ℓ with 0 ≤ ℓ ≤ M such that

Kn = Kn(ℓ) := bp̂n,ℓ +
∑

(i,s)∈S

bi,sq̂n,i,s,ℓ

is a non-zero integer. Our hypothesis implies that lim supn→∞ |Kn|1/n ≤ eβ+ρ∞ . Since |Kn||Kn|p ≥ 1, it
follows that

lim inf
n→∞

|Kn|1/n
p ≥ lim inf

n→∞
|Kn|−1/n ≥ e−(β+ρ∞).(91)

On the other hand, using (90), we find

Kn = Kn − p̂n,ℓ

(
b +

∑
(i,s)∈S

bi,sRαi,s(x)
)

=
∑

(i,s)∈S

bi,s(q̂n,i,s,ℓ − Rαi,s(x)p̂n,ℓ)

=
∑

(i,s)∈S

bi,sDnRn,i,s,ℓ(x),

from which we deduce the upper bound

lim sup
n→∞

|Kn|1/n
p ≤ lim sup

n→∞
|DnRn,i,s,ℓ(x)|1/n

p ≤ e−δ−ρp .

Together with (91), we deduce that e−(β+ρ∞) ≤ e−(δ+ρp), which contradicts our hypothesis β + ρ∞ <

δ + ρp.

Proof of Theorem 11.1. For each integer n ≥ 0, set Dn = Dn(α, x), where Dn(α, x) is as in Proposi-
tion 9.6. Define β = g(M) and

ρ∞ = M
(

1 +
m∑

j=1

1
j

)
+ log

(
µ(x)M µ(α)M

d∏
i=2

µ(αi)mi+1
)

,

ρp = − log
∣∣∣µ(x)M µ(α)M

d∏
i=2

µ(αi)mi+1
∣∣∣
p
,

δ = log
(

p1/(p−1) ·
∣∣∣xµ(α)M+1

d∏
i=2

µ(αi)mi+1
∣∣∣
p

)
.
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Condition (86) is equivalent to β + ρ∞ < δ + ρp. By Propositions 9.1, 10.1, 9.6 and 9.2 (also see Re-
mark 9.3) the hypotheses of Theorem 11.4 are satisfied with the above parameters. Therefore, the elements
(1, Rαi,s(x))(i,s)∈S of Qp are linearly independent over Q. To conclude, it suffices to notice that (12) and
(14) combined with Lemma 5.2 yields, for each (i, s) ∈ S with s ≥ 2,

Rαi,s(x) = Rs(x + αi) = −G(s)
p (x + αi).

Proof of Theorem 1.5. Let d, m be positive integers, α = (α1, . . . , αd) ∈ Qd satisfying (5) and x ∈ Q.
Set m = (m, . . . , m) ∈ Zd. Note that (5) implies that α2, . . . , αd are not integers. Assume that there exist
a, a2, . . . , ad ∈ Z coprime with p, and r, r2, . . . , rd ∈ Z≥1 such that x = a/pr and αi = ai/pri for i = 2, . . . , d.
If d = 1, then by (87) and (88), condition (86) holds if

log |x|p ≥ Cm log(m + 1),

for some large absolute constant C ≥ 1. We conclude by using Theorem 11.1.
Suppose now that d ≥ 2 and put s = max{r2, . . . , rd}. With this notation, we have

|x|p = pr and max{1, |α2|p, . . . , |αd|p} = ps.

Furthermore, den(α) = ps and µ(α) = ps+1/(p−1), so that

f(α, m) = g(M) + M

(
1 +

m∑
j=1

1
j

)
+ log

(
µ(α)M

d∏
i=2

µ(αi)m+1
)

− log |µ(α)|p

= O
(
M log(M + 1)

)
+ O

(
(M + (d − 1)(m + 1) + 1) log µ(α)

)
= O

(
dm
(

log(md + 1) + s log p
))

,

with absolute implicit constants. Therefore, there exists an absolute constant C ≥ 1 such that condition (6)
of Theorem 1.5 implies condition (86) of Theorem 11.1. Also note that in that case, inequality (85) is
automatic if C ≥ 2 (since log qp ≤ 2s log p). We conclude by using Theorem 11.1.

12 Values of the p-adic Hurwitz zeta function

Let g : Z≥1 → R+ be the function defined at the beginning of Section 11. The following improves and
generalizes Theorem 1.1.

Theorem 12.1. Let p be a prime number and m, r be positive integers. Assume that(
r + 1

p − 1

)
log p > g(m) + m + m

(
1 + 1

2 + · · · + 1
m

)
.

Then the m + 1 elements of Qp:

1, ζp(2, p−r), . . . , ζp(m + 1, p−r)

are linearly independent over Q.

Proof. Denote by ω the Teichmüller character on Q×
p . By Theorem 11.2 with d = 1, m = m, α = 0 and

x = 1/pr, the m + 1 numbers

1, ω(p−r)−1ζp(2, p−r), . . . , ω(p−r)−mζp(m + 1, p−r)

are linearly independent over Q. We conclude by noticing that ω(p−r) = p−r ∈ Q by (15).
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Recall that the special case d = m = 1 was proved by Beukers in [7, Theorem 9.2]. Since g(m) ∼ m log m

as m tends to infinity, Theorem 12.1 implies Theorem 1.2. Similarly, Theorem 1.3 is an easy consequence of
the following result.

Theorem 12.2. Let p be a prime number and a, b, m, δ be positive integers with δ = a − 3(m + 1)b > 0.
Assume that (

δ − 3m + 2
p − 1

)
log p > g(2m + 1) + (2m + 1)

(
1 + 1

2 + · · · + 1
m

)
.(92)

Then the 2m + 1 elements of Qp:

1, ζp(2, p−a), . . . , ζp(m + 1, p−a), ζp

(
2, p−a + p−b

)
, . . . , ζp

(
m + 1, p−a + p−b

)
are linearly independent over Q.

The hypothesis δ > 0 ensures that (92) is satisfied for large enough p (with m, a, b fixed).

Proof. Set x = p−a, m = (m, m), α2 = p−b and α = (0, α2). With the notation of Theorem 11.1, we have

µ(α) = µ(α2) = pb+1/(p−1).

A short computation also yields M = 2m + 1 (since d = 2) and

f(α, m) = g(M) + M

(
1 +

m∑
j=1

1
j

)
+ log

(
µ(α)M

d∏
i=2

µ(αi)m+1
)

− log |µ(α)|p

= g(M) + (2m + 1)
(

1 +
m∑

j=1

1
j

)
+ log

(
µ(α)3m+3

)
.

Consequently, condition (86) of Theorem 11.1 is equivalent to condition (92). Also note that if δ > 0, then
a ≥ 2 + b, so that |x|p ≥ p2|α2|p ≥ qp|α2|p, as required in Theorem 11.1. By Theorem 11.2, we conclude that

1, λ−1ζp(2, p−a), . . . , λ−mζp(m + 1, p−a), µ−1ζp

(
2, p−a + p−b

)
, . . . , µ−mζp

(
m + 1, p−a + p−b

)
are linearly independent over Q, with λ = ω(p−a) and µ = ω(p−a+p−b), and where ω denotes the Teichmüller
character on Q×

p . Finally, λ, µ = ±1 if p = 2, and (15) implies that λ = µ = p−a ∈ Q if a > b and p ≥ 3,
hence the expected result.
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[7] F. Beukers, Irrationality of some p-adic L-values, Acta Math. Sin. 24, no. 4, (2008), 663-686.

[8] J. P. Bezivin and P. Robba, A new p-adic method for proving irrationality and transcendence results, Ann. of Math. (2)
129, (1989), no. 1, 151-160.

[9] F. Calegari, Irrationality of Certain p-adic Periods for Small p, Int. Math. Res. Not., 20, (2005), 1235-1249.

[10] L. Carlitz, Some polynomials of Touchard connected with the Bernoulli numbers, Canad. J. Math., 9, (1957), 188-190.

[11] T. Clausen, Lehrsatz aus einer Abhandlung über die Bernoullischen Zahlen, Astron. Nachr. 17, 1840, 351-352.

[12] H. Cohen, Number theory. Vol. II. Analytic and modern tools, Graduate Texts in Mathematics, vol. 240, Springer, New
York, 2007.

[13] S. David, N. Hirata-Kohno and M. Kawashima, Can polylogarithms at algebraic points be linearly independent ?, Moscow
Journal in Combinatorics and Number Theory, 9 (2020), 389-406.

[14] S. David, N. Hirata-Kohno and M. Kawashima, Linear Forms in Polylogarithms, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XXIII (2022), 1447-1490

[15] S. David, N. Hirata-Kohno and M. Kawashima, Linear independence criteria for generalized polylogarithms with distinct
shifts, Acta Arithmetica 206 (2022), 127-169.

[16] J. Diamond, The p-adic log gamma function and p-adic Euler constants, Trans. Amer. Math. Soc. 233, 1977, 321-337.

[17] J. Diamond, On the values of p-adic L-functions at positive integers, Acta Arith., 35, 1979, 223-237.

[18] S. Fischler, Linear independence of odd zeta values using Siegel’s lemma, preprint, available at
https://arxiv.org/pdf/2109.10136.pdf.

[19] S. Fischler, J. Sprang and W. Zudilin, Many odd zeta values are irrational, Compositio Mathematica 155 (2019), no. 5,
938-952.

[20] A. I. Galochkin, Estimate from below of polynomials in the values of analytic functions of a certain class, Math. USSR
Sbornik 24 (1974) 385-407. Original article in Mat. Sbornik 95 (137) (1974).

[21] S. Gun, M. Ram Murty and P. Rath, On a conjecture of Chowla and Milnor, Canad. J. Math. 63 (2011), 1328–1344.

[22] M. Hirose, M. Kawashima and N. Sato, A lower bound of the dimension of the vector space spanned by the special values
of certain functions, Tokyo J. Math. vol. 40, 439-479.

[23] M. Kawashima, Rodrigues formula and linear independence for values of hypergeometric functions with parameters vary,
accepted for publication in J. of Australian Math. Soc., available at https://arxiv.org/pdf/2305.19616.pdf
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[33] E. M. Nikǐsin and V. N. Sorokin, Rational Approximations and Orthogonality, American Math. Soc., Translations of
Mathematical Monographs, 95 (1991).
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