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Abstract

In his seminal 1961 paper, Wirsing studied how well a given transcendental real number ξ
can be approximated by algebraic numbers α of degree at most n for a given positive integer n,
in terms of the so-called naive height H(α) of α. He showed that the supremum ω∗

n(ξ) of all ω
for which infinitely many such α have |ξ − α| ≤ H(α)−ω−1 is at least (n + 1)/2. He also asked
if we could even have ω∗

n(ξ) ≥ n as it is generally expected. Since then, all improvements on
Wirsing’s lower bound were of the form n/2 + O(1) until Badziahin and Schleischitz showed in
2021 that ω∗

n(ξ) ≥ an for each n ≥ 4, with a = 1/
√

3 ≃ 0.577. In this paper, we use a different
approach partly inspired by parametric geometry of numbers and show that ω∗

n(ξ) ≥ an for
each n ≥ 2, with a = 1/(2 − log 2) ≃ 0.765.
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1 Introduction

One of the fundamental questions in Diophantine approximation is the following. Given an irra-
tional real number ξ, how well can it be approximated by rational numbers? It follows from the
theory of continued fractions that there exist infinitely many rational numbers p/q with q ≥ 1 and∣∣∣∣ξ − p

q

∣∣∣∣ ≤ 1
q2 . (1.1)

The above property is optimal in the following sense. For any fixed ε > 0, the set of real numbers ξ

for which there exist infinitely many p/q with |ξ − p/q| ≤ 1/q2+ε has Lebesgue measure zero. This
is an easy application of the Borel-Cantelli Lemma (see [5, Corollary 1.5], also see [3, §23]). If we
think of rational numbers as algebraic numbers of degree one, then it is natural to generalize the
previous question in the following way: given a positive integer n, how well can ξ be approximated
by algebraic numbers of degree at most n? In [11] Koksma introduced a classification of real
numbers in terms of the behaviour of the sequence (ω∗

n(ξ))n≥1, where the classical exponent ω∗
n(ξ)

is defined as the supremum of the real numbers ω∗ > 0 for which the inequalities

0 < |ξ − α| ≤ H(α)−ω∗−1 (1.2)

admit infinitely many solutions in algebraic numbers α of degree at most n. Here, H(α) denotes the
(naive) height of α, that is the largest absolute value of the coefficients of its irreducible polynomial
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over Z. See Section 2 for a motivation of the summand −1 appearing in the exponent in (1.2). By
a result of Sprindžuk [17] combined with classical transference inequalities (see [14, Chapter VIII,
Section 9] and [6, Theorem 2.8]), we have

ω∗
n(ξ) = n (1.3)

for almost all real numbers ξ with respect to Lebesgue measure. Schmidt’s Subspace theorem
implies that (1.3) also holds if ξ is algebraic of degree ≥ n + 1 (see [14, Chapter 6, Corollary 1E]).
However, given a specific transcendental real number ξ, it is usually extremely difficult to determine
ω∗

n(ξ). We can find in Wirsing’s original 1961 paper [20] the following famous problem, which is
the main motivation for the present work.

Wirsing’s problem. Do we have ω∗
n(ξ) ≥ n for any integer n ≥ 1 and any transcendental real

number ξ?

So far, and despite a lot of effort, it has been confirmed only for n = 1 (this is a consequence
of (1.1)) and for n = 2 (by Davenport and Schmidt [7], also see [8]). In his 1961 paper, Wirsing
proved

ω∗
n(ξ) ≥ n + 1

2 , (1.4)

valid for each transcendental real number ξ. This was the first lower bound for ω∗
n(ξ) in terms of

n only. Until very recently, the best lower bounds due to Bernik and Tishchenko [2, 18, 19] were
of the form n/2 + O(1). In 2021, Badziahin and Schleischitz made an important breakthrough [1]
by improving on the factor 1/2 for the first time. More precisely, they showed that for each n ≥ 4
and each transcendental real number ξ, we have

ω∗
n(ξ) ≥ an, where a = 1√

3
= 0.577 · · ·

Our main result improves the above result as follows.

Theorem 1.1. Let n be an integer ≥ 2. For any transcendental real number ξ, we have

ω∗
n(ξ) ≥ an, where a = 1

2 − log 2 = 0.765 · · · .

Note that our bounds are better than those obtained in [19] starting with n = 7. We believe
that the constant a in Theorem 1.1 is not optimal and could be improved by refining our method.

Given a transcendental real number ξ, Wirsing’s approach to showing his lower bound (1.4)
is to construct coprime polynomials P and Q of degree at most n, which have integer coefficients
and have very small absolute values at ξ. Considering their resultant, he then proves that a root
of P or Q must be very close to ξ. For the proof of Theorem 1.1, the key-point is to consider
simultaneously n + 1 linearly independent polynomials P1, . . . , Pn+1 ∈ Z[X]≤n, instead of just two.
This idea has its origins in [12], where we improve the upper bound for the uniform exponent of
polynomial approximation.

2



This paper is organized as follows. In Sections 3 and 4, we construct the aforementioned
polynomials Pi, which roughly realize the successive minima of a certain symmetric convex body
in R[X]≤n (with respect to the lattice of integer polynomials Z[X]≤n). We are able to control
rather precisely their size and their absolute value at ξ. In Section 5, by evaluating some kind
of non-zero generalized resultant, we prove that for each k = 2, . . . , n + 1, at least one of the
polynomials P1, . . . , Pk has a root very close to ξ. Taking into account all these approximations,
we then conclude in Section 6 that ω∗

n(ξ) is bounded below by the minimum of an explicit function
of n + 1 variables. In the last two Sections 7 and 8, which are independent from the previous ones,
we deal with the optimization problem of finding this minimum. We show that it is at least equal
to n/(2 − log(2)).

2 Notation

For any functions f, g : I → [0, +∞) on a set I, we write f = O(g) or f ≪ g or g ≫ f to mean
that there is a positive constant c such that f(x) ≤ cg(x) for each x ∈ I. We write f ≍ g when
both f ≪ g and g ≪ f hold.

Given a ring A (typically A = R or Z) and an integer n ≥ 0, we denote by A[X] the ring of
polynomials in X with coefficients in A, and by A[X]≤n ⊆ A[X] the subgroup of polynomials of
degree at most n. We say that P ∈ Z[X] is primitive if it is non-zero and the greatest common
divisor of its coefficients is 1. Given P (X) =

∑n
k=0 akXk ∈ R[X], we set

∥P∥ = max
0≤k≤n

|ak|.

For k = 0, . . . , n, we define

P [k] = 1
k!

dk P

dXk
∈ R[X].

Then, for each real number ξ, we have

P (X) =
n∑

k=0
P [k](ξ)(X − ξ)k. (2.1)

We denote by det(P1, . . . , Pn+1) the determinant of a family of n + 1 polynomials P1, . . . , Pn+1 in
R[X]≤n with respect to the canonical basis (1, X, X2, · · · , Xn) of R[X]≤n. Note that the change-of-
basis matrix from the canonical basis to the basis (1, X−ξ, (X−ξ)2, . . . , (X−ξ)n) has determinant 1.
Using (2.1), it follows that

det(P1, . . . , Pn+1) = det
(
P

[i−1]
j (0)

)
1≤i,j≤n+1

= det
(
P

[i−1]
j (ξ)

)
1≤i,j≤n+1

. (2.2)

For short, we say that polynomials of R[X]≤n or Z[X]≤n are linearly independent to mean that
they are linearly independent over R. We identify Rn+1 to R[X]≤n via the isomorphism

(a0, . . . , an) 7−→ a0 + a1X + · · · + anXn.
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Then, the volume vol(C) of a closed set C ⊆ R[X]≤n is simply the Lebesgue measure of the
corresponding set in Rn+1. Given a = (a0, . . . , an) ∈ Rn+1, we also write

∥a∥ = max
0≤k≤n

|ak|.

Let ξ ∈ R be a transcendental number and n a positive integer. The following two classical
Diophantine exponents will play an important role in our study. We denote by ω̂n(ξ) (resp. ωn(ξ)),
the supremum of the real numbers ω > 0 such that the system

∥P∥ ≤ H and 0 < |P (ξ)| ≤ H−ω

admits a non-zero solution P ∈ Z[X]≤n for each large enough H (resp. for arbitrarily large H).
Dirichlet’s Theorem implies that

n ≤ ω̂n(ξ) ≤ ωn(ξ) (2.3)

(see for example [14, Chapter 2, Theorem 1C]). The exponent ω∗
n(ξ), as defined in the introduction,

is the supremum of the real numbers ω∗ > 0 for which there are infinitely many algebraic numbers
α of degree at most n satisfying

0 < |ξ − α| ≤ H(α)−ω∗−1. (2.4)

Here, H(α) = ∥Pα∥, where Pα is the minimal polynomial of α irreducible over Z (with positive
leading coefficient). The reader may consult [6] for an interesting survey presenting, among others,
several transference inequalities between the exponents ωn(ξ), ω̂n(ξ) and ω∗

n(ξ). In particular we
have the inequality

ω∗
n(ξ) ≤ ωn(ξ),

whose simplicity is a consequence of having the summand −1 in the exponent of H(α) in (2.4) (see
[6, Theorem 2.5]). According to [6, Theorems 2.6 and 3.1], we further have

ω∗
n(ξ) ≥ ωn(ξ) − n + 1.

Thus, if ωn(ξ) = ∞, then ω∗
n(ξ) = ∞ ≥ n and our main Theorem 1.1 holds for ξ. Consequently,

starting with Section 4 we will assume that

ωn(ξ) < ∞.

We also recall the well-known fact that any non-constant polynomial P ∈ Z[X]≤n has a root α

satisfying

|ξ − α||P ′(ξ)| ≤ n|P (ξ)|, (2.5)
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(a formula which is easily proved using the logarithmic derivative of P , see [6, Section 2]). By
Gelfond’s Lemma (see e.g. [5, Lemma A.3] as well as [4]), for each non-zero P, Q ∈ Z[X]≤n, if P

divides Q, then
e−n∥P∥ < ∥Q∥. (2.6)

In particular, if ∥Q∥ ≤ e−n∥P∥, then P cannot be a factor of Q. Moreover, if α is a root of P , then
H(α) ≤ en∥P∥ since Pα divides P .

Heuristically, one expects the existence of infinitely many non-constant P ∈ Z[X]≤n with
|P (ξ)| ≪ ∥P∥−n and |P ′(ξ)| ≍ ∥P∥ (the last estimate holds unless P has two roots close to
ξ). Then, by (2.5), each such polynomial has a root α with |ξ − α| ≪ ∥P∥−n−1 ≪ H(α)−n−1 which
is a strong form of the conjecture since, in view of the definition of ω∗

n(ξ) in (2.4), it implies that
ω∗

n(ξ) ≥ n.

Finally, if A is a subset of a R-vector space V , we denote by ⟨A⟩R ⊆ V the R-vector space
spanned by A, with the convention that ⟨∅⟩R = {0}.

3 Parametric geometry of numbers

Let ξ be a transcendental real number and n be an integer ≥ 2. Schmidt and Summerer’s parametric
geometry of numbers [15, 16], [13] is a powerful tool for studying Diophantine exponents. Although
we do not need much of this theory, it provides a convenient framework to state the results we will
use. In this section we first recall some basic elements from parametric geometry of numbers, then
we establish several lemmas which form the basis of our future polynomial constructions.

Following the approach of Roy [13] (with the maximum norm instead of the Euclidean norm),
we consider for any parameter q ≥ 0 the symmetric convex body

Cξ(q) =
{

P ∈ R[X]≤n ; ∥P∥ ≤ 1 and |P (ξ)| ≤ e−q
}

.

For i = 1, . . . , n + 1, we define Li(q) as the smallest real number L such that eLCξ(q) ∩ Z[X]≤n

contains at least i linearly independent polynomials. Thus, eL1(q), . . . , eLn+1(q) are the successive
minima of Cξ(q) with respect to the lattice Z[X]≤n. We group these minima in a map Lξ : [0, ∞) →
Rn+1 defined by

Lξ(q) =
(
L1(q), · · · , Ln+1(q)

)
.

Recall that the functions Li are continuous, piecewise linear with slopes 0 and 1 (they are therefore
non-decreasing). Furthermore, since vol

(
Cξ(q)

)
≍ e−q, Minkowski’s second theorem implies that

L1(q) + · · · + Ln+1(q) = q + O(1), q ∈ [0, ∞),

where the implicit constant depends on n and ξ only. To any non-zero polynomial P ∈ Z[X]≤n we
associate a function L(P, ·) → [0, +∞) by setting

L(P, q) = max
{

log ∥P∥, q + log |P (ξ)|
}

(q ∈ [0, +∞)).
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Following Roy’s terminology [13, §2.2], the trajectory of a non-zero polynomial P ∈ Z[X]≤n is the
graph of the function L(P, ·). Note that L(P, ·) is continuous, piecewise linear, constant on [0, qP ]
and increasing with slope 1 on [qP , ∞), where the slope change point qP is

qP = log ∥P∥ − log |P (ξ)|.

Thus, for each q ≥ 0, we have

L(P, q) =


log ∥P∥ if q ≤ qP ,

q + log |P (ξ)| if q ≥ qP .

Since, for each q ≥ 0, the smallest L ≥ 0 such that P ∈ eLCξ(q) is precisely L(P, q), we have

L1(q) = min
P ∈Z[X]≤n\{0}

L(P, q). (3.1)

Moreover, since ξ is transcendental, we have limq→∞ L1(q) = ∞. Although we will not need them,
we have the classical formulas (arguing as in [15, Theorem 1.4])

φ = lim inf
q→∞

L1(q)
q

= 1
1 + ωn(ξ) and φ = lim sup

q→∞

L1(q)
q

= 1
1 + ω̂n(ξ) .

The exponents φ and φ are parametric versions of the exponents ωn(ξ) and ω̂n(ξ).

Lemma 3.1. Fix ω̂ < ω̂n(ξ). There exists q0 = q0(ω̂) ≥ 0 with the following property. Let
q ∈ [q0, ∞) and Q ∈ Z[X]≤n be such that L(Q, ·) has slope 1 on [q, ∞) and coincides with L1 at q.
Then

|Q(ξ)| ≤ e−ω̂L1(q). (3.2)

Proof. Choose q ≥ 0 and Q ∈ Z[X]≤n such that L(Q, ·) has slope 1 on [q, ∞). This means that
L(Q, q) = q + log |Q(ξ)|. We also assume that L(Q, q) = L1(q) and set H = eL1(q). By definition of
ω̂n(ξ), if q is large enough, there exists a non-zero P ∈ Z[X]≤n such that

∥P∥ < H = eL1(q) and |P (ξ)| ≤ H−ω̂.

Since L1(q) ≤ L(P, q) = max{log ∥P∥, q + log |P (ξ)|}, this yields L(P, q) = q + log |P (ξ)|, and

q + log |Q(ξ)| = L1(q) ≤ q + log |P (ξ)| ≤ q − ω̂L1(q),

hence log |Q(ξ)| ≤ −ω̂L1(q), which is equivalent to (3.2).

Lemma 3.2. There exists a constant c > 0 which depends on n and ξ only such that, for any
linearly independent polynomials P1, . . . , Pn+1 ∈ Z[X]≤n, we have

1 ≤ c∥P1∥ · · · ∥Pn+1∥
n+1∑
i=1

|Pi(ξ)|
∥Pi∥

.
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Proof. Since det(P1, . . . , Pn+1) is a non-zero integer, it follows from (2.2) that

1 ≤ |det(P1, . . . , Pn+1)| =
∣∣∣∣det

(
P

[i−1]
j (ξ)

)
1≤i,j≤n+1

∣∣∣∣ .

We conclude by expanding the last determinant and by noting that for j = 1, . . . , n + 1, we have
P

[0]
j (ξ) = Pj(ξ) and |P [i−1]

j (ξ)| ≪ ∥Pj∥ (i = 2, . . . , n + 1).

The following result is crucial for our approach. Under some condition, it provides n + 1
linearly independent polynomials with integer coefficients which have “good” properties: their
absolute values are small at ξ and their height are under control. In some way, it is reminiscent of
[13, Theorem 3.1]. The idea is to start with a family of polynomials which realize the successive
minima of Cξ(q), and then to correct these polynomials to make their absolute values small at ξ.

Lemma 3.3. Let q ∈ [0, ∞) and Q ∈ Z[X]≤n such that L1(q) = L(Q, q). We suppose that L(Q, ·)
has slope 1 on [q, +∞). Then, there exist linearly independent polynomials P1, . . . , Pn+1 ∈ Z[X]≤n

such that P1 = Q and

(i) |Pi(ξ)| < |P1(ξ)| and eLi(q) ≤ ∥Pi∥ ≤ 2eLi(q) for i = 2, . . . , n + 1;

(ii) ∥P1∥ ≤ · · · ≤ ∥Pn+1∥;

(iii) |P1(ξ)| · ∥P2∥ · · · ∥Pn+1∥ ≍ 1, with implicit constants depending only on n and ξ.

Proof. Let Q1 = Q, Q2, . . . , Qn+1 ∈ Z[X]≤n be linearly independent polynomials which realize
L1(q), · · · , Ln+1(q), i.e. such that

L(Qi, q) = Li(q) (i = 1, . . . , n + 1).

By hypothesis on Q = Q1, we have q ≥ q1, where q1 = log ∥Q1∥ − log |Q1(ξ)| is the abscissa where
L(Q1, ·) changes slope. We obtain

L1(q) = L(Q1, q) = log ∥Q1∥ + q − q1 and log |Q1(ξ)| = L1(q) − q.

Then, Minkowski’s second theorem yields

|Q1(ξ)|eL2(q)+···+Ln+1(q) = e−q+L1(q)+···+Ln+1(q) ≪ 1. (3.3)

Set P1 = Q1, and for i = 2, . . . , n + 1, put

Ri = Qi −
⌊

Qi(ξ)
P1(ξ)

⌋
P1 ∈ Z[X]≤n.

We have |Ri(ξ)| < |P1(ξ)| and since q1 = log
(
∥Q1∥/|Q1(ξ)|

)
= log

(
∥P1∥/|P1(ξ)|

)
, we also have

∥Ri∥ ≤ 2 max
{

∥Qi∥,
|Qi(ξ)|
|P1(ξ)| · ∥P1∥

}
= 2 exp

(
max

{
log ∥Qi∥, log |Qi(ξ)| + q1

})
= 2eL(Qi,q1)

≤ 2eL(Qi,q) = 2eLi(q).
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Denote by P2, . . . , Pn+1 the polynomials R2, . . . , Rn+1 reordered by increasing norm. By the above,
for i = 2, . . . , n + 1, we have

|Pi(ξ)| < |P1(ξ)| and ∥Pi∥ ≤ 2eLi(q). (3.4)

On the other hand, since log |Pi(ξ)| + q < log |P1(ξ)| + q = L1(q) ≤ L(Pi, q) (the last inequality
coming from the minimality property of (3.1)), we must have L(Pi, q) = log ∥Pi∥, thus

log ∥P1∥ ≤ L(P1, q) = L1(q) ≤ L(Pi, q) = log ∥Pi∥.

So, we have

L(P1, q) ≤ L(P2, q) = log ∥P2∥ ≤ · · · ≤ log ∥Pn+1∥ = L(Pn+1, q).

Since the polynomials P1, P2, . . . , Pn+1 ∈ Z[X]≤n are linearly independent, we deduce that

Li(q) ≤ L(Pi, q) = log ∥Pi∥ for i = 2, . . . , n + 1. (3.5)

So the conditions (i) and (ii) are fulfilled. Finally, Lemma 3.2 together with (3.4) and (3.3) yields

1 ≪
n+1∏
i=1

∥Pi∥
n+1∑
i=1

|Pi(ξ)|
∥Pi∥

≪ |P1(ξ)|
n+1∏
i=2

∥Pi∥ ≪ |P1(ξ)|eL2(q)+···+Ln+1(q) ≪ 1.

Note that (3.5) together with (3.4) show that Li(q) ≤ L(Pi, q) ≤ Li(q) + log 2 for i = 1, . . . , n + 1,
while L1(q) = L(P1, q). Thus, roughly speaking, the polynomials Pi realize the successive minima
of Cξ(q) up to a factor ≤ 2.

4 Families of polynomials

From now on, we fix an integer n ≥ 2 and a transcendental real number ξ with ωn(ξ) < ∞, which
is no restriction for the proof of Theorem 1.1 as we saw in Section 2. In this section, we adjust our
polynomial construction of Lemma 3.3 taking into account the exponents ωn(ξ) and ω̂n(ξ). Fix a
small ε ∈ (0, 1) and set

ω̂ = ω̂(ε) = ω̂n(ξ) − ε

2 and ω = ω(ε) = ωn(ξ) − ε

2 . (4.1)

It follows from the definition of ωn(ξ) and ω̂n(ξ) that there exists H0 ≥ 1 such that for each H > H0,
the system

∥Q∥ ≤ H and |Q(ξ)| ≤ H−ω̂ (4.2)

has a non-zero solution Q ∈ Z[X]≤n, and that any such Q satisfies

|Q(ξ)| ≥ ∥Q∥−ωn(ξ)−ε/2 (4.3)

(because when H goes to infinity, the quantity |Q(ξ)| tends to 0, and thus ∥Q∥ also goes to infinity).
Define

P(ε) =
{
P ∈ Z[X]≤n irreducible ; e−n∥P∥ ≥ H0 and |P (ξ)| ≤ ∥P∥−ω}

.

Note that any element of P(ε) has norm at least enH0 > 1. A classical argument of Wirsing [20,
Hilfssatz 4] ensures that the set P(ε) is infinite (see also [9, Section 6]).
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Lemma 4.1. Let ε ∈ (0, 1) and let P ∈ P(ε). There are linearly independent polynomials
Q1, . . . , Qn+1 ∈ Z[X]≤n satisfying the following properties. Write Hi = ∥Qi∥ for i = 1, . . . , n + 1.

(i) The polynomials Q1 and Q2 are coprime and Q2 = P .

(ii) We have H1 ≤ · · · ≤ Hn+1, and there exists x ≥ n such that H2 · · · Hn+1 = Hx
2 .

(iii) If ∥P∥ is large enough, then x ∈ [ω̂n(ξ) − ε, ωn(ξ) + ε] and

max {|Q1(ξ)|, . . . , |Qn+1(ξ)|} ≪ H−x+ε
2 . (4.4)

The implicit constants depend on n and ξ only.

Proof. Recall from (4.1) that ω̂ = ω̂(ε) and ω = ω(ε). Let P ∈ P(ε) and let q ≥ 0 be maximal such
that L1(q) = log(e−n∥P∥). The point q tends to infinity as ∥P∥ goes to infinity. Let Q ∈ Z[X]≤n

be such that

L(Q, q) = L1(q).

By maximality of q, there exists η > 0 such that L1 has slope 1 on [q, q + η]. Since L1 ≤ L(Q, ·),
the function L(Q, ·) has slope 1 on [q, ∞). Therefore

log ∥Q∥ ≤ L(Q, q) = log |Q(ξ)| + q = L1(q) = log
(
e−n∥P∥

)
. (4.5)

Thus ∥Q∥ ≤ e−n∥P∥, and, by (2.6), the irreducible polynomial P cannot be a factor of Q. They
are therefore coprime. Moreover, Lemma 3.1 implies that if q (or equivalently ∥P∥) is large enough,
then Q is solution of (4.2), namely

∥Q∥ ≤ H and |Q(ξ)| ≤ H−ω̂,

with H = e−n∥P∥ ≥ H0. Combined with (4.3), this gives

∥Q∥−ωn(ξ)−ε/2 ≤ |Q(ξ)| ≤
(
e−n∥P∥

)−ω̂ ≪ ∥P∥−ω̂. (4.6)

On the other hand, there exist P1, . . . , Pn+1 in Z[X]≤n, with P1 = Q satisfying assertions (i)–(iii)
of Lemma 3.3. In particular, for i = 2, . . . , n + 1, we have

∥Pi∥ ≥ eL1(q) = e−n∥P∥ and |Pi(ξ)| < |Q(ξ)|.

For these indices i, set P̃i = Pi + λiP with λi = 0 if ∥Pi∥ > ∥P∥, and λi = 3 otherwise, so that

∥Pi∥ ≍ ∥P̃i∥ > ∥P∥ and |P̃i(ξ)| ≤ 4 max {|Q(ξ)|, |P (ξ)|} ,

as well as

|P1(ξ)|
n+1∏
i=2

∥P̃i∥ ≍ |P1(ξ)|
n+1∏
i=2

∥Pi∥ ≍ 1. (4.7)
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Since the family P, P1, P̃2, . . . , P̃n+1 spans R[X]≤n and since P and Q = P1 are linearly independent,
there exists an index j ∈ {2, . . . , n+1} such that P, P1, P̃2, . . . ,

̂̃
Pj , . . . , P̃n+1 are linearly independent

(where P̃j is omitted from the list). We denote by Q1, . . . , Qn+1 this family reordered by increasing
norm. By construction of the polynomials P̃k, we have (Q1, Q2) = (Q, P ). Let x ∈ R be such that

∥Q2∥ · · · ∥Qn+1∥ = ∥Q2∥x.

The inequalities ∥Q2∥ ≤ · · · ≤ ∥Qn+1∥ imply that x ≥ n. The first two assertions of the lemma are
thus satisfied. We also have

max {|Q1(ξ)|, . . . , |Qn+1(ξ)|} ≪ max{|Q(ξ)|, |P (ξ)|}. (4.8)

Since ∥P∥ ≤ ∥P̃j∥, we deduce from (4.7) that

1 ≍ |P1(ξ)|
n+1∏
i=2

∥P̃i∥ ≥ |Q(ξ)|
n+1∏
i=2

∥Qi∥ = |Q(ξ)| · ∥P∥x.

Therefore

|Q(ξ)| ≪ ∥P∥−x. (4.9)

According to the first inequality of (4.6) (and since ∥Q∥ < ∥P∥), we have

∥P∥x ≪ ∥P∥ωn(ξ)+ε/2. (4.10)

Consequently, as soon as ∥P∥ is large enough, we have x ∈ [n, ωn(ξ) + ε]. It remains to prove the
last assertion of our Lemma.

Proof of assertion (iii). Now, write P(ε) as a disjoint union

P(ε) = P0(ε)
⊔

P1(ε),

where

P0(ε) =
{
R ∈ P(ε) ; log

(
e−n∥R∥

)
< L1(qR)

}
and P1(ε) = P(ε) \ P0(ε),

and qR = log ∥R∥ − log |R(ξ)| as in Section 3. The set P0(ε) is the set of polynomials R ∈ P(ε)
which almost realize L1 at q = qR, since L(R, qR) < L1(qR) + n. We only know that at least one of
the sets P0(ε), P1(ε) is infinite.

Case 1. First assume that P ∈ P0(ε). Then L1(qP ) > log(e−n∥P∥) and we find

q < qP = log ∥P∥ − log |P (ξ)|.

It follows that

log
(
e−n∥P∥

)
= L1(q) = log |Q(ξ)| + q ≤ log |Q(ξ)| + log ∥P∥ − log |P (ξ)|,
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which implies e−n|P (ξ)| ≤ |Q(ξ)|, and so (4.8) becomes

max {|Q1(ξ)|, . . . , |Qn+1(ξ)|} ≪ |Q(ξ)| ≪ ∥P∥−x,

hence (4.4). On the other hand, Lemma 3.2 applied to the family (Q1, . . . , Qn+1) ensures that

1 ≪ |Q(ξ)|
n+1∏
i=2

∥Qi∥ = |Q(ξ)| · ∥P∥x.

Combined with (4.9), this yields |Q(ξ)| ≍ ∥P∥−x. Then (4.6) gives ∥P∥ω̂ ≪ ∥P∥x, and we conclude
that x ≥ ω̂n(ξ) − ε as soon as ∥P∥ is large enough.

Case 2. Assume that P ∈ P1(ε). We now have L1(qP ) ≤ log(e−n∥P∥), and thus q ≥ qP . Combined
with

eL(Q,q) = eL1(q) = e−n∥P∥ < ∥P∥

this implies |Q(ξ)| = eL1(q)−q < ∥P∥e−qP = |P (ξ)| ≤ ∥P∥−ω, and (4.8) becomes

max {|Q1(ξ)|, . . . , |Qn+1(ξ)|} ≪ |P (ξ)| ≤ ∥P∥−ω. (4.11)

Together with (4.10) this yields (4.4). Finally, Lemma 3.2 yields

1 ≪ |P (ξ)|
n+1∏
i=2

∥Qi∥ ≤ ∥P∥x−ω,

and so x ≥ ω − ε/2 = ωn(ξ) − ε ≥ ω̂n(ξ) − ε as soon as ∥P∥ is large enough, the last inequality
coming from (2.3).

5 Generalized resultants

Let n and ξ be as in Section 4. The main result of the section is the following, which, combined
with Lemma 4.1, will allow us to construct algebraic numbers of degree at most n very close to ξ.

Proposition 5.1. Let k be an integer with 2 ≤ k ≤ n + 1 and set N = 2n − k + 1 ≥ n. Let
P1, . . . , Pk ∈ Z[X]≤n be linearly independent polynomials, and write Hi = ∥Pi∥ for i = 1, . . . , k.
Suppose that P1 and P2 are coprime, and that

H1 ≤ · · · ≤ Hk and max
1≤i≤k

|Pi(ξ)| ≤ δ,

for some δ > 0. Then, there exist an algebraic number α of degree ≤ n and an index m ∈ {1, . . . , k}
such that

H(α) ≪ Hm and |ξ − α| ≪ δ2Hn−k+1
1 Hn−k+2

2 H3 · · · HkH−1
m , (5.1)

where the implicit constants depend on n and ξ only.
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To prove this result we will use generalized resultants. Let us recall the results from [12, §6].
We say that a function g : {n, n + 1, n + 2 · · · } → R is concave if

g(i) − g(i − 1) ≥ g(i + 1) − g(i)

for any i > n. Let N ≥ n be an integer and let A ̸= {0} be a subset of R[X]≤n containing a
non-zero element. We define

BN (A) =
{
Q, XQ, . . . , XN−deg(Q)Q ; Q ∈ A \ {0}

}
⊆ R[X]≤N ,

VN (A) = ⟨BN (A)⟩R ,

gA(N) = dim VN (A).

We call generalized resultant the determinant of any N + 1 elements chosen in BN (A), for some
A as above. According to [12, Lemma 6.3], the function gA is (strictly) increasing and concave on
{n, n + 1, . . . }. If we assume furthermore that the gcd of the elements of A is 1 (in other words the
ideal spanned by A is R[X]), then

V2n−1(A) = R[X]≤2n−1 (5.2)

(it is a direct consequence of [12, Proposition 6.2]).

Lemma 5.2. Let A be a linearly independent subset of R[X]≤n of cardinality j with 2 ≤ j ≤ n + 1.
We also suppose that the gcd of the elements of A is 1. Then, for h = 0, . . . , n − j + 1, we have

dim Vn+h(A) ≥ 2h + j.

Proof. By contradiction, suppose that there exists h ∈ {0, . . . , n − j + 1} such that

gA(n + h) < 2h + j.

Since gA(n) ≥ card(A) = j, we have h ≥ 1.

Case 1. Suppose that gA(n + h) ≥ g(n + h − 1) + 2. By concavity, we have gA(i) ≥ gA(i − 1) + 2
for i = n + 1, . . . , n + h, and we deduce that

gA(n + h) ≥ 2h + gA(n) ≥ 2h + j

which is a contradiction.

Case 2. So gA(n + h) ≤ g(n + h − 1) + 1. By concavity (and since gA is increasing), we have
gA(i + 1) = gA(i) + 1 for i = n + h, . . . , 2n. Combined with (5.2), we get

2n = gA(2n − 1) = gA(n + h) + 2n − 1 − (n + h) < n + h + j − 1 ≤ 2n

(the last inequality coming from h ≤ n − j + 1), which is, once again, a contradiction.

As a corollary, we obtain the following useful result.
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Corollary 5.3. Let k, N be as in Proposition 5.1. Let P1, . . . , Pk ∈ Z[X]≤n be linearly independent
polynomials such that P1 and P2 are coprime. Then, for each j = 2, . . . , k we have

dim VN (P1, . . . , Pj) ≥ 2(n − k + 1) + j.

In particular,

VN (P1, . . . , Pk) = R[X]≤N .

Proof. Set A = {P1, . . . , Pk}. Fix an integer j with 2 ≤ j ≤ k and choose h = n − k + 1 = N − n.
Then 0 ≤ h ≤ n − j + 1, and Lemma 5.2 yields

dim VN (P1, . . . , Pk) = dim Vn+h(A) ≥ 2h + j = 2(n − k + 1) + j.

Proof of Proposition 5.1. First, note that there exist λ1, λ2 ∈ {0, . . . , n} such that the polyno-
mials

Qi = (X − λi)n−deg(Pi)Pi (i = 1, 2)

are coprime and of degree exactly n. By Gel’fond’s Lemma, they also satisfy ∥Qi∥ ≍ ∥Pi∥ = Hi

and |Qi(ξ)| ≍ |Pi(ξ)| ≤ δ (i = 1, 2), and the vector space

F = VN (Q1, Q2)

spanned by Q1, XQ1, . . . , Xn−k+1Q1, Q2, XQ2, . . . , Xn−k+1Q2 has dimension 2(n − k + 2). We can
choose a subsequence (Q3, . . . , Qk) of (P1, . . . , Pk) such that Q1, . . . , Qk are linearly independent.
For each j = 3, . . . , k there is some i ∈ {1, . . . , j} such that ∥Qj∥ = Hi ≤ Hj . According to
Corollary 5.3, we have

dim
(
F + VN (Q3, . . . , Qj)

)
= dim VN (Q1, . . . , Qj) ≥ dim F + j − 2,

for j = 2, . . . , k. For j = k we obtain VN (Q1, . . . , Qk) = R[X]≤N . By recurrence, for j = 3, . . . , k,
we choose Rj ∈ BN (Q3, . . . , Qj) such that

dim
(
F + ⟨R3, . . . , Rj⟩R

)
= dim F + j − 2.

In particular

F ⊕ ⟨R3, . . . , Rk⟩R = R[X]≤N . (5.3)

Note that for each j = 3, . . . , k, there is some index i ∈ {1, . . . , j} such that,

∥Rj∥ = Hi ≤ Hj and |Rj(ξ)| ≪ δ. (5.4)

Moreover, the roots of Rj are algebraic numbers of degree at most n, since they are either 0 or a
root of one of the polynomials Q3, . . . , Qj ∈ Z[X]≤n. By (5.3), the sequence

(S0, . . . , SN ) = (Q1, XQ1, · · · , Xn−k+1Q1, Q2, XQ2, · · · , Xn−k+1Q2, R3, . . . , Rk)
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forms a basis of R[X]≤N . The first n − k + 2 polynomials Si have norm ≍ H1, while the following
n − k + 2 ones have norm ≍ H2. We control the norms of the last k − 2 polynomials R3, . . . , Rk

using (5.4). The corresponding non-zero generalized resultant det(S0, . . . , SN ) satisfies

1 ≤ |det(S0, . . . , SN )| =
∣∣∣∣det

(
S

[i]
j (ξ)

)
0≤i,j≤N

∣∣∣∣ ,

see (2.2) for the last equality. For j = 0, . . . , N , we have

|S[0]
j (ξ)| = |Sj(ξ)| ≪ δ and S

[1]
j (ξ) = S′

j(ξ).

For i = 2, . . . , N we will use the crude estimate |S[i]
j (ξ)| ≪ ∥Sj∥. Expanding the last determinant,

we obtain

1 ≤
∣∣∣∣det

(
S

[i]
j (ξ)

)
0≤i,j≤N

∣∣∣∣ ≪ δHn−k+1
1 Hn−k+2

2 H3 · · · Hk

N∑
ℓ=0

|S′
ℓ(ξ)|

∥Sℓ∥
. (5.5)

Let ℓ ∈ {0, . . . , N} be such that |S′
ℓ(ξ)|/∥Sℓ∥−1 is maximal, and let α be a root of Sℓ such that |ξ−α|

is minimal. Recall that α is algebraic of degree at most n and that there exists m ∈ {1, . . . , k}
such that ∥Sℓ∥ ≍ Hm. Then, the minimal polynomial of α divides Sℓ, and Gel’fond’s lemma yields
H(α) ≪ ∥Sℓ∥ ≪ Hm. On the other hand, by (2.5) we have

|ξ − α||S′
ℓ(ξ)| ≪ |Sℓ(ξ)| ≪ δ.

Multiplying both sides of (5.5) by |ξ − α|, this yields (5.1).

Proposition 5.1 has the following Corollary.

Corollary 5.4. Let k be an integer with 2 ≤ k ≤ n + 1 and let C, y > 0. Let P1, . . . , Pk ∈ Z[X]≤n

be linearly independent polynomials and write Hi = ∥Pi∥ for i = 1, . . . , k. Assume that

(i) P1 and P2 are coprime and H2 ≥ 2;

(ii) H1 ≤ · · · ≤ Hk;

(iii) |Pi(ξ)| ≤ CH−y
2 for i = 1, . . . , k.

For i = 2, . . . , k write Hi = Hai
2 , and suppose furthermore that

Ak := 2y − 2(n + 1 − k) − a2 − · · · − ak ≥ 0.

Then, there exist an algebraic number α of degree ≤ n and a constant c which depends on n, ξ only,
such that

|ξ − α| ≪ C2 min
{(

cH(α)
)−Ak/ak−1

, H−Ak−1
2

}
. (5.6)

The implicit constant depends on n and ξ only.

14



Remark 5.5. Since Ak ≥ 0, equation (5.6) implies that |ξ − α| ≪ 1/H2 tends to 0 as H2 tends to
infinity. Consequently H(α) tends to infinity as H2 tends to infinity.

Proof. Set δ = CH−y
2 . By Proposition 5.1, there exist an algebraic number α of degree at most n

and m ∈ {2, . . . , k} such that

cH(α) ≤ Hm and |ξ − α| ≪ δ2H2n−2k+3
2 H3 · · · HkH−1

m = C2H−Ak−am
2 , (5.7)

where c > 0 depends on ξ and n only. Since am ≥ 1, we have |ξ − α| ≪ C2H−Ak−1
2 . Furthermore,

using ak ≥ am and Ak ≥ 0, Estimates (5.7) also yield

|ξ − α| ≪ C2H−Ak/am−1
m ≤ C2H−Ak/ak−1

m ≤ C2(cH(α))−Ak/ak−1.

6 A step toward Wirsing’s conjecture

Let n and ξ be as in Section 4. In this section, we merge the main results of the preceding two
sections to provide a lower bound for ω∗

n(ξ). This uses the following notation. Given x ≥ n we
define

A(x) =
{

a = (a2, . . . , an+1) ∈ Rn ; 1 = a2 ≤ · · · ≤ an+1 and a2 + · · · + an+1 = x
}

.

For each a = (a2, . . . , an+1) ∈ A(x) and each integer k with 2 ≤ k ≤ n + 1, we set

Ak(x, a) = 2x − 2(n − k + 1) −
k∑

i=2
ai = 2(x − n) +

k∑
i=2

(2 − ai),

and

F (x, a) = max
2≤k≤n+1

Ak(x, a)
ak

.

Since a 7→ F (x, a) is continuous on the compact set A(x), we may also define

F (x) = min
a∈A(x)

F (x, a).

Note that the condition a2 + · · ·+an+1 = x in the definition of A(x) is equivalent to x = An+1(x, a).
Furthermore, for each a ∈ A(x), we have

Ak(x, a) ≥ 1 for k = 2, . . . , n + 1, (6.1)

since 2(n − k + 1) + a2 + · · · + ak ≤ (n − k + 1) + a2 + · · · + an+1 ≤ 2x − 1.

We claim that the function x 7→ F (x) is continuous on [n, +∞). Indeed, let M, x, y be real
numbers with M ≥ y ≥ x ≥ n and write δ = y − x. Choose a ∈ A(x) such that F (x) = F (x, a),
and denote by b′ the point obtained by adding δ to the last coordinate of a. Then b′ ∈ A(y) and

∥a − b′∥ ≤ δ.
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This implies that

F (x) = F (x, a) = F (y, b′) + O(δ) ≥ F (y) + O(δ),

where the implicit constant depend on M only. Similarly, we show that F (y) ≥ F (x) + O(δ) by
choosing b ∈ A(y) satisfying F (y) = F (y, b) and a point a′ ∈ A(x) with ∥b − a′∥ ≤ δ (whose
existence we leave to the reader). Thus, |F (y) − F (x)| = O(|y − x|) for any x, y ∈ [n, M ], and our
claim follows.

Theorem 6.1. We have

ω∗
n(ξ) ≥ inf{F (x) ; ωn(ξ) ≥ x ≥ ω̂n(ξ)}.

Consequently,
ω∗

n(ξ) ≥ Fn := inf
x≥n

F (x).

Proof. Fix a small ε ∈ (0, 1/2) and let P be an element of the infinite set P(ε) defined as in
Section 4. According to Lemma 4.1, if ∥P∥ is large enough, then there exist linearly independent
polynomials Q1, . . . , Qn+1 ∈ Z[X]≤n and x ≥ n with

ω̂n(ξ) − ε ≤ x ≤ ωn(ξ) + ε,

such that, writing Hi = ∥Qi∥ for i = 1, . . . , n + 1, we have

(i) Q1 and Q2 are coprime, with Q2 = P ;

(ii) H1 ≤ · · · ≤ Hn+1 and H2 · · · Hn+1 = Hx
2 ;

(iii) |Q1(ξ)|, . . . , |Qn+1(ξ)| ≪ H−x+ε
2 .

For i = 2, . . . , n + 1, define ai ≥ 1 by Hi = Hai
2 . Condition (ii) means that the point a =

(a2, . . . , an+1) belongs to A(x). Set y = x − ε. By (6.1), for each k ∈ {2, . . . , n + 1}, we have

2y − 2(n + 1 − k) − a2 − · · · − ak = Ak(x, a) − 2ε ≥ 0.

By Corollary 5.4 applied successively with k = 2, . . . , n + 1, there exists an algebraic number α of
degree at most n, such that

|ξ − α| ≪ H(α)−F (x,a)−1+2ε ≤ H(α)−F (x)−1+2ε ≤ H(α)−Fn(ε)−1+2ε,

where Fn(ε) denotes the minimum of F on [ω̂n(ξ) − ε, ωn(ξ) + ε] ∩ [n, +∞). Recall that H(α) tends
to infinity with ∥P∥, because we have |ξ − α| ≪ H−1

2 = ∥P∥−1 in view of the last estimate of
Corollary 5.4. Since P(ε) is infinite, we deduce that

ω∗
n(ξ) ≥ Fn(ε) − 2ε.

Since F is continuous on [n, +∞), we get the result by letting ε tend to 0.

Remark 6.1. Suppose that in the proof of Lemma 4.1, the set P1(ε) is infinite for arbitrarily small
values of ε. Then we could take x ≥ ωn(ξ) − ε in the proof of Theorem 6.1, and we would obtain
ω∗

n(ξ) ≥ F
(
ωn(ξ)

)
.
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7 A minimization problem

Let the notation be as in Section 6. Theorem 6.1 calls for a lower bound estimate for Fn. We first
prove that there exist a point (x, a) ∈ Rn+1 with x ≥ n and a ∈ A(x) satisfying F (x, a) = Fn.
Then, we give a complete description of a as a function of Fn and x and some integer ℓ with
2 ≤ ℓ ≤ n. In the final Section 8, we use these properties to give an explicit lower bound for Fn

and deduce Theorem 1.1. Our approach is inspired by the remarkable strategy described by de La
Vallée-Poussin in [10, Chapter VI] to construct polynomials of best approximation to a continuous
real valued function on a closed interval on R.

Theorem 7.1. There exists a point (x, a) ∈ Rn+1, with a = (a2, . . . , an+1), such that

x ≥ n, a ∈ A(x) and Fn = F (x, a). (7.1)

Any such point has the following properties.

(i) There exists ℓ ∈ {2, . . . , n} such that Fn = 2(x − n) + ℓ − 1 and

x = (2 − θ)Fn, where θ =
(

Fn

Fn + 1

)n+1−ℓ

.

(ii) The point a = (a2, . . . , an+1) is given by a2 = · · · = aℓ = 1, and

ak = 2 −
(

Fn

Fn + 1

)k−ℓ

, for k = ℓ, . . . , n + 1.

(iii) We have

Fn = Aℓ+1(x, a)
aℓ+1

= · · · = An+1(x, a)
an+1

.

Theorem 7.1 implies that there are at most n − 1 points satisfying (7.1) (for such a point is
entirely determined by the integer ℓ). Note that the first part of (i) combined with aℓ = 1 ensures
that the formula in (iii) is also valid for the index ℓ. In order to prove the above theorem, we first
prove that the infimum Fn is actually a minimum.

Lemma 7.1. We have Fn < n, and the set Mn of points (x, a) ∈ Rn+1 satisfying (7.1) is non-
empty. Furthermore, any (x, a) ∈ Mn has n < x < (3n − 1)/2.

Proof. For a fixed ε ∈ [0, 1/2), the point a = (1, . . . , 1, 1 + ε) ∈ Rn belongs to A(x) with x = n + ε.
It follows from the definition that Ak(x, a)/ak = 2ε + k − 1 < n for k = 2, . . . , n and

An+1(x, a)
an+1

= n + ε

1 + ε
≤ n,

with equality if and only if ε = 0. Taking 0 < ε < 1/2, we deduce that Fn ≤ F (x, a) < n. Note
that for x = n, the set A(n) reduces to {(1, . . . , 1)} and F (n) = n. On the other hand, for any
x ≥ n, each a = (a2, . . . , an+1) ∈ A(x) has a2 = 1, thus

F (x, a) ≥ A2(x, a)
a2

= 2(x − n) + 1.
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If follows that F (x) ≥ 2(x−n)+1. Consequently, if x ≥ (3n−1)/2, then F (x) ≥ n > Fn. Consider
the compact subset Kn of Rn+1 given by

Kn =
{

(x, a) ∈ Rn+1 | x ∈
[
n,

3n − 1
2

]
and a ∈ A(x)

}
.

By the above, we have Fn = inf(x,a)∈Kn
F (x, a). Since the function F is continuous on the compact

set Kn, this infimum is actually a minimum. Furthermore, since Fn < n, any point (x, a) ∈ Kn

realizing this minimum satisfies n < x < (3n − 1)/2.

Lemma 7.2. Let Mn be as in Lemma 7.1, let (x, a) ∈ Mn and write a = (a2, . . . , an+1). There
exists an integer ℓ ∈ {2, . . . , n} such that

(i) 1 = a2 = · · · = aℓ < aℓ+1 < · · · < an+1 < 2;

(ii) Aℓ+1(x, a)/aℓ+1 = · · · = An+1(x, a)/an+1 = Fn;

(iii) 2(x − n) + ℓ − 1 ≤ Fn < 2(x − n) + ℓ.

Proof. Step 1. Suppose that aj < aj+1 for an integer j with 2 ≤ j ≤ n. We claim that

Aj+1(x, a)
aj+1

= Fn. (7.2)

Indeed, for each ε ∈ (0, aj+1 − aj ], the point

b = (b2, . . . , bn+1) = (a2, . . . , aj , aj+1 − ε, aj+2, . . . , an+1)

belongs to A(y), where y = x − ε. Since b2 = 1, we have y = b2 + · · · + bn+1 ≥ n. By definition of
the functions Ak we have

Ak(y, b) =
{

Ak(x, a) − 2ε for k = 2, . . . , j,
Ak(x, a) − ε for k = j + 1, . . . , n + 1.

So, for each k ̸= j + 1, we find

Ak(y, b)
bk

<
Ak(x, a)

ak
≤ F (x, a) = Fn.

However, by minimality of Fn, we have F (y, b) ≥ Fn, thus

F (y, b) = Aj+1(y, b)
bj+1

= Aj+1(x, a) − ε

aj+1 − ε
≥ Fn.

Letting ε tend to 0, we obtain Fn ≤ Aj+1(x, a)/aj+1 ≤ F (x, a), hence our claim.

Step 2. Suppose that an+1 ≥ 2. Since a2 = 1 < 2, there exists an integer j with 2 ≤ j ≤ n such
that aj < 2 ≤ aj+1. Using Step 1, we get

Fn = F (x, a) ≥ Aj(x, a)
aj

= Aj+1(x, a) + aj+1 − 2
aj

>
Aj+1(x, a)

aj+1
= Fn,
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a contradiction. Hence 1 = a2 ≤ a3 ≤ · · · ≤ an+1 < 2.

Step 3. Let ℓ be the largest integer in {2, . . . , n + 1} such that aℓ = 1. As 1 = a2 ≤ · · · ≤ an+1,
we have a2 = · · · = aℓ = 1. If ℓ = n + 1, then x = n, which contradicts Lemma 7.1, so ℓ ≤ n. By
contradiction, suppose that assertion (i) is false. Then ℓ < n and by Step 2 there exists an integer
j with ℓ ≤ j ≤ n − 1 such that aj < aj+1 = aj+2 < 2. Using Step 1, we obtain

Fn = F (x, a) ≥ Aj+2(x, a)
aj+2

= Aj+1(x, a) + 2 − aj+2
aj+1

>
Aj+1(x, a)

aj+1
= Fn,

a contradiction. Thus (i) holds, and by Step 1, it yields (ii). Finally, assertion (iii) follows from
aℓ+1 > 1 and

2(x − n) + ℓ − 1 = Aℓ(x, a)
aℓ

≤ Fn = Aℓ+1(x, a)
aℓ+1

< Aℓ+1(x, a) < 2(x − n) + ℓ.

Lemma 7.3. Let x ∈ [n, (3n − 1)/2], let ℓ ∈ {2, . . . , n}, let a = (a2, . . . , an+1) ∈ Rn with a2 =
· · · = aℓ = 1 and let y, F ∈ R with

y = 2(x − n) + ℓ − 1 ≤ F < y + 1.

The following assertions are equivalent

(i) For k = ℓ + 1, . . . , n + 1, we have

Ak(x, a)
ak

= F. (7.3)

(ii) For k = ℓ + 1, . . . , n + 1, we have

ak = 2 − 2F − y

F + 1

(
F

F + 1

)k−ℓ−1
. (7.4)

If they hold, then 1 < aℓ+1 < · · · < an+1 < 2.

Proof. (i) ⇔ (ii). As Aℓ+1(x, a) = y + 2 − aℓ+1, we first observe that (7.3) holds for k = ℓ + 1 if
and only if aℓ+1 = (y + 2)/(F + 1). Suppose that (7.3) holds for an index k with ℓ + 1 ≤ k ≤ n.
Then, since Ak+1(x, a) = Ak(x, a) + 2 − ak+1, the equality (7.3) holds for k + 1 if and only if

ak+1 = F

F + 1ak + 2
F + 1 . (7.5)

By the above remark, (i) holds if and only if aℓ+1 = (y + 2)/(F + 1) and (7.5) is satisfied for
k = ℓ + 1, . . . , n. This is precisely the arithmetico-geometric sequence of (ii).

Finally, the hypothesis y ≤ F < y + 1 implies that

F

F + 1 ≤ 2F − y

F + 1 < 1,

so that if (7.4) holds, then a2 = · · · = aℓ < aℓ+1 < · · · < an+1.
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Lemma 7.4. With the notation and hypotheses of Lemma 7.3 set

θ =
(

F

F + 1

)n+1−ℓ

,

and suppose that a ∈ Rn satisfies the two equivalent conditions (i) and (ii) of Lemma 7.3, as well
as 1 = a2 = · · · = aℓ. Then, (x, a) ∈ A(x) if and only if

(1 − 2θ)x = 2F (1 − θ) − θ(2n − ℓ + 1). (7.6)

Moreover, if (7.6) holds, then θ ̸= 1/2.

Proof. Since y = 2(x − n) + ℓ − 1, Equation (7.6) is equivalent to x = 2F − (2F − y)θ. Recall that
a2 + · · · + an+1 = x if and only if x = An+1(a, x). Since the coordinates of a are increasing, the
point (x, a) belongs to A(x) if, and only if,

x = An+1(x, a) =
(7.3)

an+1F =
(7.4)

2F − F (2F − y)
F + 1

(
F

F + 1

)n−ℓ

= 2F − (2F − y)θ.

It remains to prove the last part of the Lemma. By contradiction, suppose now that (7.6) holds
with θ = 1/2. Then, we obtain

F = 2n − ℓ + 1
2 ∈ Q and 1

2 = θ =
(

F

F + 1

)n+1−ℓ

.

This implies that the exponent n + 1 − ℓ is equal to 1, thus ℓ = n and F = (n + 1)/2 = 1, which is
impossible since n ≥ 2.

Proof of Theorem 7.1. By Lemma 7.1 there exists (x, a) = (x, a2, . . . , an+1) ∈ Rn+1 satisfying (7.1),
and any such point has n < x < (3n−1)/2. Fix such a point. Then Lemma 7.2 provides an integer
ℓ ∈ {2, . . . , n} for which a2 = · · · = aℓ = 1,

y := 2(x − n) + ℓ − 1 ≤ Fn < y + 1, (7.7)

and assertion (iii) of Theorem 7.1 holds. It only remains to prove that Fn = y and that x = (2−θ)Fn,
for then Lemma 7.3 implies assertions (i) and (ii) of the theorem. According to Lemma 7.4, we
have

(1 − 2θ)x = 2Fn(1 − θ) − θ(2n − ℓ + 1), where θ =
(

Fn

Fn + 1

)n+1−ℓ

̸= 1
2 .

Fix ε ∈ [0, 1) and set F ′ = Fn − ε. If ε is small enough, then

θ′ :=
(

F ′

F ′ + 1

)n+1−ℓ

̸= 1
2 ,

and there exists x′ = x′(ε) ∈ R such that (x′, θ′, F ′) satisfy (7.6). By contradiction, suppose that
y < Fn < y + 1. We note that for ε = 0, we have (x′, F ′) = (x, Fn). So, if ε is small enough, we
also have n < x′ < (3n − 1)/2 and y′ < F ′ < y′ + 1, where

y′ = y′(ε) = 2(x′ − n) + ℓ − 1.
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Set a′
2 = · · · = a′

ℓ = 1 and define a′
k by (7.4) (with F = F ′) for k = ℓ + 1, . . . , n + 1. We denote

by a′ the point (a′
2, . . . , a′

n+1). Then x′, a′, ℓ, y′ and F ′ satisfy the hypotheses of Lemmas 7.3
and 7.4. According to Lemma 7.4, and since x′, F ′ satisfy (7.6), we have a′ ∈ A(x′). Moreover,
Ak(x′, a′)/a′

k = 2(x′ − n) + k − 1 ≤ y′ for k = 2, . . . , ℓ, and our choice of a′ yields

Ak(x′, a′)
a′

k

= F ′ ≥ y′ for k = ℓ + 1, . . . , n + 1.

Thus F (x′, a′) = F ′ < Fn, a contradiction. It follows that Fn = y, as expected, hence assertion (ii)
of Theorem 7.1 holds. In particular, the last coordinate of a multiplied by Fn is equal to (2−θ)Fn by
assertion (ii), and is also equal to An+1(x, a) = x by assertion (iii). Hence the identity (2 − θ)Fn =
x.

8 Proof of the main result

Let n be an integer ≥ 2. We keep the notation of Section 6 for the function F and its minimum
Fn. We now have all the tools we need to give an explicit lower bound for Fn. Together with
Theorem 6.1, the next estimate implies Theorem 1.1.

Theorem 8.1. We have Fn ≥ n/(2 − log 2).

Proof. Fix (x, a) ∈ Rn+1 satisfying the condition (7.1) of Theorem 7.1, and let ℓ ∈ {2, . . . , n} such
that

Fn = 2(x − n) + ℓ − 1. (8.1)

Set θ =
(
Fn/(Fn + 1)

)n+1−ℓ. The formula x = (2 − θ)Fn combined with (8.1) leads to

(3 − 2θ)Fn = 2n + 1 − ℓ. (8.2)

Since t log(1 + 1/t) ≤ 1 for each t > 0, we find

Fn log θ = −(n + 1 − ℓ)Fn log
(

1 + 1
Fn

)
≥ −(n + 1 − ℓ).

Together with (8.2), this yields (3 − 2θ + log θ)Fn ≥ n. Finally, the function t 7→ 3 − 2t + log t has
a global maximum on (0, ∞) at t = 1/2, which is equal to 2 − log 2, hence (2 − log 2)Fn ≥ n.
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